Oscar A. Nyangiri, J. Kevin Baird, Frédéric B. Piel, Mewahyu Dewi, Carmencita Padilla, Anand P. Patil, Mariana M. Hogg, Peter W. Gething, Rosalind E. Howes, Katherine E. Battle, and Simon I. Hay
Rosalind Howes and colleagues present a map of glucose-6-phosphate dehydrogenase deficiency prevalence and severity. Individuals with the deficiency are at risk of mild to severe hemolysis when taking the antimalarial primaquine., Background Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk. Methods and Findings Representative community surveys of phenotypic G6PDd prevalence were identified for 1,734 spatially unique sites. These surveys formed the evidence-base for a Bayesian geostatistical model adapted to the gene's X-linked inheritance, which predicted a G6PDd allele frequency map across malaria endemic countries (MECs) and generated population-weighted estimates of affected populations. Highest median prevalence (peaking at 32.5%) was predicted across sub-Saharan Africa and the Arabian Peninsula. Although G6PDd prevalence was generally lower across central and southeast Asia, rarely exceeding 20%, the majority of G6PDd individuals (67.5% median estimate) were from Asian countries. We estimated a G6PDd allele frequency of 8.0% (interquartile range: 7.4–8.8) across MECs, and 5.3% (4.4–6.7) within malaria-eliminating countries. The reliability of the map is contingent on the underlying data informing the model; population heterogeneity can only be represented by the available surveys, and important weaknesses exist in the map across data-sparse regions. Uncertainty metrics are used to quantify some aspects of these limitations in the map. Finally, we assembled a database of G6PDd variant occurrences to inform a national-level index of relative G6PDd haemolytic risk. Asian countries, where variants were most severe, had the highest relative risks from G6PDd. Conclusions G6PDd is widespread and spatially heterogeneous across most MECs where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of primaquine-associated harm. In the absence of non-toxic alternatives to primaquine, these results represent additional evidence to help inform safe use of this valuable, yet dangerous, component of the malaria-elimination toolkit. Please see later in the article for the Editors' Summary, Editors' Summary Background Malaria is a parasitic infection that is transmitted to people through the bites of infected mosquitoes. Of the four parasites that cause malaria, Plasmodium falciparum is the most deadly and P. vivax is the commonest and most widely distributed. Malaria parasites have a complex life cycle. Infected mosquitoes inject “sporozoites” into people, a form of the parasite that replicates inside human liver cells. After a few days, the liver cells release “merozoites,” which invade red blood cells where they replicate rapidly before bursting out and infecting other red blood cells. This increase in the parasitic burden causes malaria's characteristic fever and can cause organ damage and death. Infected red blood cells also release “gametocytes,” which infect mosquitoes when they take a blood meal. In the mosquito, gametocytes multiply and develop into sporozoites, thus completing the parasite's life cycle. Malaria can be prevented by controlling the mosquitoes that spread the parasite and by avoiding mosquito bites by sleeping under insecticide-treated bed nets. Treatment with effective antimalarial drugs also decreases malaria transmission. Why Was This Study Done? The Global Malaria Action Plan aims to reduce malaria deaths to zero by 2015 and to eradicate malaria in the long-term through its progressive elimination in malaria-endemic countries (countries where malaria is always present). Primaquine is a key drug for malaria elimination. It is the only treatment effective against the gametocytes that transmit malaria between people and mosquitoes and against P. vivax “hypnozoites,” which hibernate in the liver and cause malaria relapses. Unfortunately, primaquine induces mild to severe destruction of red blood cells (hemolysis) in people who have a deficiency in the enzyme glucose-6-phosphate dehydrogenase (G6PD). G6PD deficiency (G6PDd) is common in some ethnic groups but the global distribution of individuals at risk of primaquine-induced hemolysis is unknown and there is no practical field test for G6PDd. Consequently, it is hard to design and implement primaquine treatment practices that balance the benefits of malaria transmission reduction and relapse prevention against the risk of hemolysis. Here, the researchers use a geostatistical model to map the prevalence (frequency in a population) of G6PDd in malaria-endemic countries and to estimate how many people are affected in these countries. They also develop a national index of relative hemolytic risk. What Did the Researchers Do and Find? The researchers fed data from community surveys of the prevalence of phenotypic G6PDd (reduced enzyme activity) for 1,734 sites (including 1,289 sites in malaria-endemic countries) into a geostatistical model originally developed to map global malaria endemicity. The model predicted that G6PDd is widespread across malaria-endemic regions, with the lowest prevalences in the Americas and the highest in tropical Africa and the Arabian Peninsula, but that most G6PDd individuals live in Asian countries. The predicted prevalence of G6PDd varied considerably over relatively short distances in many areas but, averaged across malaria-endemic countries it was 8%, which corresponds to about 350 million affected individuals; averaged across countries that are currently planning for malaria elimination, the prevalence was 5.3% (nearly 100 million affected individuals). Finally, the researchers used data on the geographical occurrence of G6PD variants classified according to their enzyme activity levels as mild or severe to derive an index of hemolytic risk from G6PDd for each malaria-endemic country. The greatest risk was in the Arabian Peninsula and west Asia where the predicted prevalence of G6PDd and the occurrence of severe G6PD variants were both high. What Do These Findings Mean? These findings suggest that G6PDd is widespread and spatially heterogeneous across most of the malaria-endemic countries where primaquine would be valuable for malaria control and elimination. The accuracy of these findings is limited, however, by the assumptions made in the geostatistical model, by the accuracy of the data fed into the model, and by the lack of data for some malaria-endemic countries. Moreover, there is considerable uncertainty associated with the proposed index of hemolysis risk because it is based on phenotypic G6PDd enzyme activity classifications, which is presumed, but not widely demonstrated, to be a surrogate marker for hemolysis. Nevertheless, these findings pave the way for further data collection and for the refinement of G6PDd maps that, in the absence of non-toxic alternatives to primaquine, will guide the design of safe primaquine regimens for the elimination of malaria. Additional Information Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001339. Information is available from the World Health Organization on malaria; its 2011 World Malaria Report provides details of the current global malaria situation (some information is available in several languages) The US Centers for Disease Control and Prevention provide information on malaria (in English and Spanish), including a selection of personal stories about malaria Information is available from the Roll Back Malaria Partnership on the global control of malaria and on the Global Malaria Action Plan Information on the global mapping of malaria is available at the Malaria Atlas Project website where G6PD deficiency prevalence maps, population estimates and the data used in this study can also be accessed Information about G6PD deficiency for affected families can be found on KidsHealth from the Nemous Children's Health System and the G6PD Deficiency Association website MedlinePlus provides links to additional information on malaria; the MedlinePlus Encyclopedia provides information about G6PD deficiency (in English and Spanish)