1. Directly reprogramming fibroblasts into adipogenic, neurogenic and hepatogenic differentiation lineages by defined factors
- Author
-
Yu‑Qing Jin, Wei Wu, and Zhen Gao
- Subjects
0301 basic medicine ,Cancer Research ,Cell type ,Cell ,neurocyte ,reprogramming ,General Medicine ,Transfection ,Articles ,Cell cycle ,Biology ,adipocyte ,fibroblast ,03 medical and health sciences ,Hepatocyte nuclear factors ,030104 developmental biology ,medicine.anatomical_structure ,Immunology and Microbiology (miscellaneous) ,Adipogenesis ,medicine ,Cancer research ,hepatocyte ,Transcription factor ,Reprogramming ,transcription factor - Abstract
The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types represents a great potential technology for regenerative medicine. In the present study, the potential of key developmental adipogenic, neurogenic and hepatogenic regulators to reprogram human fibroblasts into adipocytes, neurocytes and hepatocytes was investigated. The results demonstrated that direct reprogramming of octamer-binding transcription factor 4 (Oct4) and CCAAT-enhancer-binding protein (C/EBP)β activated C/EBPα and peroxisome proliferator-activated receptor-γ expression, inducing the conversion of fibroblasts into adipocytes. Similarly, direct reprogramming of the transcription factors sex determining region-box 2, trans-acting T-cell specific transcription factor (GATA-3) and neurogenic differentiation 1 in fibroblasts may induce neurogenic differentiation through hemagglutinating virus of Japan envelope (HVJ-E) transfection. Moreover, hepatogenic differentiation was induced by combining the direct reprogramming of Oct4, GATA-3, hepatocyte nuclear factor 1 homeobox α and forkhead box protein A2 in fibroblasts. These results demonstrate that specific transcription factors and reprogramming factors are able to directly reprogram fibroblasts into adipogenic, neurogenic and hepatogenic differentiation lineages by HVJ-E transfection.
- Published
- 2017