1. Quantification of the Risk of Musculoskeletal Disorders of the Upper Limb Using Fuzzy Logic: A Study of Manual Wheelchair Propulsion.
- Author
-
Marchiori, Claire, Gagnon, Dany H., and Pradon, Didier
- Subjects
- *
MUSCULOSKELETAL system diseases , *FUZZY logic , *WHEELCHAIRS , *WRIST , *MOTION capture (Human mechanics) , *SPINAL cord injuries - Abstract
Background: For manual wheelchair users, overuse of the upper limbs can cause upper limb musculoskeletal disorders, which can lead to a loss of autonomy. The main objective of this study was to quantify the risk level of musculoskeletal disorders of different slope propulsions in manual wheelchair users using fuzzy logic. Methods: In total, 17 spinal cord injury participants were recruited. Each participant completed six passages on a motorized treadmill, the inclination of which varied between (0° to 4.8°). A motion capture system associated with instrumented wheels of a wheelchair was used. Using a biomechanical model of the upper limb and the fuzzy logic method, an Articular Discomfort Index (ADI) was developed. Results: We observed an increase in articular discomfort during propulsion on a slope with increasing discomfort at the shoulder, elbow and wrist, due to an increase in kinetics. There was a kinetically significant change in the kinetic global ADI (22 to 25%) and no change in the kinematic. The ADI increased from 14 to 36% during slope propulsion for each joint. Conclusion: The quantification of the level of discomfort helps us to highlight the situations with the most high-risk exposures and to identify the parameters responsible for this discomfort. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF