1. Powder metallurgy with space holder for porous titanium implants: A review
- Author
-
Elisa Rupérez, José A. Calero, Miquel Punset, Francisco Javier Gil, José María Manero, Alejandra Rodríguez-Contreras, Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials, and Universitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
- Subjects
Materials science ,Porous titanium structures ,Polymers and Plastics ,Biocompatibility ,Open-cell titanium foams ,Interconnected porosity ,Compaction ,Sintering ,chemistry.chemical_element ,02 engineering and technology ,Porous materials permeability ,010402 general chemistry ,Enginyeria dels materials [Àrees temàtiques de la UPC] ,01 natural sciences ,Osseointegration ,Powder metallurgy ,Porous bone substitute materials ,Materials Chemistry ,Composite material ,Stress shielding effect ,Porosity ,Titanium ,Sintering-dissolution technique ,Mechanical Engineering ,Pròtesis -- Materials ,Metals and Alloys ,Titani ,Stress shielding ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Space holder method ,chemistry ,Mechanics of Materials ,Materials biomèdics ,Ceramics and Composites ,Medical devices ,0210 nano-technology ,Biomedical materials - Abstract
One of the biggest challenges in the biocompatibility of implantable metals is the prevention of the stress shielding effect, which is related to the coupling of the bone-metal mechanical properties. This stress shielding phenomenon provokes bone resorption and the consequent adverse effects on prosthesis fixation. However, it can be inhibited by adapting the stiffness of the implant material. Since the use of titanium (Ti) porous structures is a great alternative not only to inhibit this effect but also to improve the osteointegration of orthopedic and dental implants, a brief description of the techniques used for their manufacturing and a review of the current commercialized implants produced from porous Ti assemblies are compiled in this work. As powder metallurgy (PM) with space holder (SH) is a powerful technology used to produce porous Ti structures, it is here discussed its potential for the fabrication of medical devices from the perspectives of both design and manufacture. The most important parameters of the technique such as the size and shape of the initial metallic particles, the SH and binder type of materials, the compaction pressure of the green form, and in the sintering stage, the temperature, atmosphere, and time are reviewed according to the bibliography reported. Furthermore, the importance of the porosity and its types together with the influence of the mentioned parameters in the final porosity and, consequently, in the ultimate mechanical properties of the structure are discussed. Finally, a few examples of the PM-SH application for the manufacturing of orthopedic implants are presented.
- Published
- 2021