1. Up-regulated SPP1 increases the risk from IPF to lung cancer via activating the pro-tumor macrophages
- Author
-
Tingting Chen, Jiayu Guo, Liqiang Ai, Yuquan Wang, Yan Wang, Bo Chen, Mingyue Liu, Shuping Zhuang, Kaidong Liu, Zhangxiang Zhao, Haihai Liang, and Yunyan Gu
- Subjects
Idiopathic pulmonary fibrosis ,Single-cell RNA-seq ,Lung cancer ,SPP1+ macrophages ,Biotechnology ,TP248.13-248.65 - Abstract
The incidence of lung cancer (LC) in Idiopathic Pulmonary Fibrosis (IPF) patients is more than twice that in non-IPF. This study aims to investigate IPF-to-LC pathogenesis and to develop a predictor for detecting IPF predisposing patients to LC. We conducted unsupervised clustering to detect high-risk subtypes from IPF to LC. Subsequently, we performed single-cell RNA-seq analysis to characterize high-risk IPF by examining the immune microenvironment. We identified 42 common immune function-related pathogenic genes between IPF and LC. We developed an LC risk classifier for IPF patients, comprising five genes: SPP1, MMP9, MMP12, FABP4, and IL1B. The five-gene classifier can successfully distinguish the high-risk population from IPF patients. High-risk IPF patients exhibited an immunosuppressive microenvironment with higher oncogene expression than low-risk patients. Single-cell analysis revealed that SPP1+ macrophages at the terminal of macrophages' developmental trajectory may promote the progression from IPF to LC. The strong crosstalk between SPP1+ macrophages and inflammation-related cancer-associated fibroblasts promoted the tumorigenic process in IPF. In vitro, assays showed that co-culturing macrophages overexpressing SPP1 with MRC-5 cells induced the transition of fibroblasts into cancer-associated fibroblasts. SPP1 produced by macrophages promoted epithelial-mesenchymal transition in alveolar epithelial cells via stimulating the upregulation of N-cadherin and Vimentin in MLE-12 cells. This study provided a novel method to identify the LC risk population from IPF, revealing the cellular interactions involved in the transition from IPF to LC. Our findings highlighted SPP1 as a critical driver in IPF progression, offering a potential target for therapy in fibrosis.
- Published
- 2023
- Full Text
- View/download PDF