1. Effect of ice slushy ingestion and cold water immersion on thermoregulatory behavior.
- Author
-
Choo, Hui C., Peiffer, Jeremiah J., Lopes-Silva, João P., Mesquita, Ricardo N. O., Amano, Tatsuro, Kondo, Narihiko, and Abbiss, Chris R.
- Subjects
- *
ICE , *INGESTION , *WATER immersion , *BODY temperature regulation , *EXERCISE physiology , *SKIN temperature - Abstract
Two studies were conducted to examine the effects of ice slushy ingestion (ICE) and cold water immersion (CWI) on thermoregulatory and sweat responses during constant (study 1) and self-paced (study 2) exercise. In study 1, 11 men cycled at 40–50% of peak aerobic power for 60 min (33.2 ± 0.3°C, 45.9 ± 0.5% relative humidity, RH). In study 2, 11 men cycled for 60 min at perceived exertion (RPE) equivalent to 15 (33.9 ± 0.2°C and 42.5 ± 3.9%RH). In both studies, each trial was preceded by 30 min of CWI (~22°C), ICE or no cooling (CON). Rectal temperature (Tre), skin temperature (Tsk), thermal sensation, and sweat responses were measured. In study 1, ICE decreased Tre-Tsk gradient versus CON (p = 0.005) during first 5 min of exercise, while CWI increased Tre-Tsk gradient versus CON and ICE for up to 20 min during the exercise (p<0.05). In study 2, thermal sensation was lower in CWI versus CON and ICE for up to 35–40 min during the exercise (p<0.05). ICE reduced thermal sensation versus CON during the first 20 min of exercise (p<0.05). In study 2, CWI improved mean power output (MPO) by ~8 W, compared with CON only (p = 0.024). In both studies, CWI (p<0.001) and ICE (p = 0.019) delayed sweating by 1–5 min but did not change the body temperature sweating threshold, compared with CON (both p>0.05). Increased Tre-Tsk gradient by CWI improved MPO while ICE reduced Tre but did not confer any ergogenic effect. Both precooling treatments attenuated the thermal efferent signals until a specific body temperature threshold was reached. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF