1. Effects of hyperoxic ventilation on hemodilution-induced changes in anesthetized dogs.
- Author
-
Habler OP, Kleen MS, Hutter JW, Podtschaske AH, Tiede M, Kemming GI, Welte MV, Corso CO, Batra S, Keipert PE, Faithfull NS, and Messmer KF
- Subjects
- Anesthesia, Animals, Dogs, Hemodynamics, Transplantation, Autologous, Blood Loss, Surgical prevention & control, Blood Transfusion, Hemodilution, Respiration, Artificial adverse effects
- Abstract
Background: In subjects who have undergone acute preoperative normovolemic hemodilution (ANH), intraoperative hemorrhage is generally treated by immediate return of autologous blood collected during ANH. Simply increasing blood oxygen content by hyperoxic ventilation (HV, inspiratory fraction [FIO2] 1.0) might compensate for the acute anemia, allow further ANH, and delay onset of autologous blood return., Study Design and Methods: This study 1) evaluated the effects of HV (FIO2 1.0) upon ANH to a hemoglobin (Hb) concentration of 7 g per dL in anesthetized dogs ventilated with room air and 2) compared the effects of subsequent profound ANH (Hb, 3 g/dL) with and without an intravenous perfluorocarbon emulsion (perflubron 60% wt/vol) versus those of autologous red cell transfusion. The results of the entire study are presented in two parts. Organ tissue oxygenation was assessed in skeletal muscle and liver, and systemic oxygenation status was evaluated. Myocardial contractility was deduced from left ventricular pressure-volume relationship. Seven of 22 dogs underwent further hemodilution while breathing 100-percent O2, for a determination of the Hb concentration at which HV-induced effects were abolished., Results: HV completely reversed the ANH-induced increase in cardiac index (4.6 +/- 0.7 vs. 3.8 +/- 0.9 L/min/m2 before and during HV; p < 0.05) and partially reversed the decrease in systemic vascular resistance (1784 +/- 329 vs. 2087 +/- 524 dyn x cm-5 x sec x m-2; p < 0.05). Despite unchanged global O2 delivery, organ tissue oxygenation improved during HV (mixed venous partial pressure of O2: 40 +/- 3 vs. 59 +/- 7 torr; coronary venous pressure of O2: 30 +/- 4 vs. 43 +/- 6 torr; p < 0.05; liver surface: 31 +/- 11 vs. 39 +/- 13 torr; skeletal muscle surface: 30 +/- 14 vs. 41 +/- 22 torr; p < 0.05). This improvement was due to an increased contribution of physically dissolved O2 in plasma to O2 delivery (3.2 +/- 0.2% before HV vs. 14.6 +/- 1% during HV; p < 0.05) and O2 consumption (whole body: 6 +/- 1% vs. 47 +/- 8%, p < 0.05; myocardium: 4.3 +/- 0.9% vs. 31 +/- 6%, p < 0.05). The beneficial effects of HV were lost after an additional volume-compensated exchange of 19 percent of blood volume (Hb, 5.6 g/dL)., Conclusion: In anesthetized dogs ventilated with room air and hemodiluted to a Hb of 7 g per dL, simple oxygen therapy by HV (FIO2 1.0) rapidly improves tissue oxygenation and permits extended hemodilution to Hb of 5.8 g per dL until the HV-induced effects are lost.
- Published
- 1998
- Full Text
- View/download PDF