1. Acute coronary syndrome remodels the antiplatelet aggregation properties of HDL particle subclasses.
- Author
-
Garcia C, Montée N, Faccini J, Series J, Meilhac O, Cantero AV, Le Faouder P, Elbaz M, Payrastre B, and Vindis C
- Subjects
- Acute Coronary Syndrome diagnosis, Aged, Biomarkers blood, Case-Control Studies, Female, Humans, Male, Middle Aged, Oxidation-Reduction, Platelet Adhesiveness, Scavenger Receptors, Class B blood, Signal Transduction, Thrombosis diagnosis, von Willebrand Factor metabolism, Acute Coronary Syndrome blood, Blood Platelets metabolism, Fatty Acids, Unsaturated blood, Lipoproteins, HDL blood, Platelet Aggregation, Thrombosis blood
- Abstract
Essentials HDL subclasses were studied in acute coronary syndrome (ACS). HDL2 from ACS patients have better antiplatelet potency than HDL from non ACS subjects. ACS remodels the antiplatelet properties of HDL subclasses. Oxidized polyunsaturated fatty acids content of HDL is modified by ACS., Summary: Background Although HDLs have antithrombotic effects by reducing platelet activation, the relationship between HDL levels and the risk of acute coronary syndrome (ACS) is unclear, as HDL particles are heterogeneous in composition and biological properties. Objective To characterize the effects of HDL2 and HDL3 subclasses from ACS patients and non-coronary artery disease (CAD) subjects on platelet activation. Methods We measured platelet aggregation and ex vivo thrombus formation, analyzed signaling pathways by flow cytometry, and performed a targeted lipidomics analysis on HDL subclasses. Results Analysis of human platelet aggregation in suspension, adhesion on von Willebrand factor and thrombus formation on collagen under arterial shear demonstrated that HDL2 from ACS patients had higher antiplatelet potency than HDL3 from ACS patients and HDL from non-CAD subjects. HDL binding to scavenger receptor class B type I was essential for this effect. A lipidomics analysis revealed that HDL2 from ACS patients had more oxidized polyunsaturated fatty acids (PUFAs). An inverse correlation between the concentrations of 9-hydroxyoctadecadienoic acid (9-HODE), 13-hydroxyoctadecadienoic acid (13-HODE), the eicosapentaenoic acid metabolite 18-hydroxyeicosapentaenoic acid (18-HEPE) and hydroxyeicosatetraenoic acid isomers in HDL2 and platelet aggregation was observed. This relationship was further demonstrated by the direct inhibitory effects of 18-HEPE, 9-HODE, 13-HODE, 17-hydroxydocosahexaenoic acid and 14-hydroxydocosahexaenoic acid on collagen-related peptide-induced platelet aggregation, indicating that oxidized PUFAs contribute to the antithrombotic effect of ACS HDL2. Conclusions Our data shed new light on the antiplatelet effects of HDL subclasses, and suggest physiological adaptation through the modulation of HDL properties in ACS patients that may limit their platelet-dependent thrombotic risk., (© 2018 International Society on Thrombosis and Haemostasis.)
- Published
- 2018
- Full Text
- View/download PDF