1. Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging.
- Author
-
Wehrl HF, Bezrukov I, Wiehr S, Lehnhoff M, Fuchs K, Mannheim JG, Quintanilla-Martinez L, Kohlhofer U, Kneilling M, Pichler BJ, and Sauter AW
- Subjects
- Acetic Acid chemistry, Animals, Formaldehyde chemistry, Lysine chemistry, Mice, Mice, Inbred BALB C, Paraffin Embedding, Periodic Acid chemistry, Picrates chemistry, Polymers chemistry, Time Factors, Tissue Fixation, Zinc chemistry, Brain diagnostic imaging, Brain drug effects, Fixatives chemistry, Magnetic Resonance Imaging, Tomography, X-Ray Computed
- Abstract
Especially for neuroscience and the development of new biomarkers, a direct correlation between in vivo imaging and histology is essential. However, this comparison is hampered by deformation and shrinkage of tissue samples caused by fixation, dehydration and paraffin embedding. We used magnetic resonance (MR) imaging and computed tomography (CT) imaging to analyze the degree of shrinkage on murine brains for various fixatives. After in vivo imaging using 7 T MRI, animals were sacrificed and the brains were dissected and immediately placed in different fixatives, respectively: zinc-based fixative, neutral buffered formalin (NBF), paraformaldehyde (PFA), Bouin-Holland fixative and paraformaldehyde-lysine-periodate (PLP). The degree of shrinkage based on mouse brain volumes, radiodensity in Hounsfield units (HU), as well as non-linear deformations were obtained. The highest degree of shrinkage was observed for PLP (68.1%, P < 0.001), followed by PFA (60.2%, P<0.001) and NBF (58.6%, P<0.001). The zinc-based fixative revealed a low shrinkage with only 33.5% (P<0.001). Compared to NBF, the zinc-based fixative shows a slightly higher degree of deformations, but is still more homogenous than PFA. Tissue shrinkage can be monitored non-invasively with CT and MR. Zinc-based fixative causes the smallest degree of brain shrinkage and only small deformations and is therefore recommended for in vivo ex vivo comparison studies.
- Published
- 2015
- Full Text
- View/download PDF