1. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function.
- Author
-
Thapak P and Gomez-Pinilla F
- Subjects
- Humans, Animals, Oxidative Stress, Brain Injuries, Traumatic metabolism, Brain Injuries, Traumatic physiopathology, Energy Metabolism, Neuronal Plasticity, Mitochondria metabolism, Brain metabolism, Brain physiopathology, Brain pathology
- Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF