1. Network Differential in Gaussian Graphical Models from Multimodal Neuroimaging Data .
- Author
-
Falakshahi H, Rokham H, Miller R, Liu J, and Calhoun VD
- Subjects
- Humans, Neuroimaging, Gray Matter, Magnetic Resonance Imaging methods, Brain diagnostic imaging, Brain Diseases
- Abstract
Multimodal brain network analysis has the potential to provide insights into the mechanisms of brain disorders. Most previous studies have analyzed either unimodal brain graphs or focused on local/global graphic metrics with little consideration of details of disrupted paths in the patient group. As we show, the combination of multimodal brain graphs and disrupted path-based analysis can be highly illuminating to recognize path-based disease biomarkers. In this study, we first propose a way to estimate multimodal brain graphs using static functional network connectivity (sFNC) and gray matter features using a Gaussian graphical model of schizophrenia versus controls. Next, applying the graph theory approach we identify disconnectors or connectors in the patient group graph that create additional paths or cause absent paths compared to the control graph. Results showed several edges in the schizophrenia group graph that trigger missing or additional paths. Identified edges associated with these disrupted paths were identified both within and between dFNC and gray matter which highlights the importance of considering multimodal studies and moving beyond pairwise edges to provide a more comprehensive understanding of brain disorders.Clinical Relevance- We identified a path-based biomarker in schizophrenia, by imitating the structure of paths in a multimodal (sMIR+fMRI) brain graph of the control group. Identified cross-modal edges associated with disrupted paths were related to the middle temporal gyrus and cerebellar regions.
- Published
- 2023
- Full Text
- View/download PDF