1. Electroconvulsive therapy-induced volumetric brain changes converge on a common causal circuit in depression.
- Author
-
Argyelan M, Deng ZD, Ousdal OT, Oltedal L, Angulo B, Baradits M, Spitzberg AJ, Kessler U, Sartorius A, Dols A, Narr KL, Espinoza R, van Waarde JA, Tendolkar I, van Eijndhoven P, van Wingen GA, Takamiya A, Kishimoto T, Jorgensen MB, Jorgensen A, Paulson OB, Yrondi A, Péran P, Soriano-Mas C, Cardoner N, Cano M, van Diermen L, Schrijvers D, Belge JB, Emsell L, Bouckaert F, Vandenbulcke M, Kiebs M, Hurlemann R, Mulders PC, Redlich R, Dannlowski U, Kavakbasi E, Kritzer MD, Ellard KK, Camprodon JA, Petrides G, Malhotra AK, and Abbott CC
- Subjects
- Humans, Female, Male, Middle Aged, Adult, Magnetic Resonance Imaging methods, Aged, Treatment Outcome, Neuroimaging methods, Depression therapy, Cohort Studies, Nerve Net, Electroconvulsive Therapy methods, Depressive Disorder, Major therapy, Deep Brain Stimulation methods, Brain physiopathology, Transcranial Magnetic Stimulation methods
- Abstract
Neurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response. We set out to investigate if the neuronal underpinnings of electroconvulsive therapy (ECT) are similarly associated with this causal depression network (CDN). Our aim here is to provide a comprehensive analysis in three cohorts of patients segregated by electrode placement (N = 246 with right unilateral, 79 with bitemporal, and 61 with mixed) who underwent ECT. We conducted a data-driven, unsupervised multivariate neuroimaging analysis Principal Component Analysis (PCA) of the cortical and subcortical volume changes and electric field (EF) distribution to explore changes within the CDN associated with antidepressant outcomes. Despite the different treatment modalities (ECT vs TMS and DBS) and methodological approaches (structural vs functional networks), we found a highly similar pattern of change within the CDN in the three cohorts of patients (spatial similarity across 85 regions: r = 0.65, 0.58, 0.40, df = 83). Most importantly, the expression of this pattern correlated with clinical outcomes (t = -2.35, p = 0.019). This evidence further supports that treatment interventions converge on a CDN in depression. Optimizing modulation of this network could serve to improve the outcome of neurostimulation in depression., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF