1. Comparison of diagnostic performance of radiologist- and AI-based assessments of T2-FLAIR mismatch sign and quantitative assessment using synthetic MRI in the differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted.
- Author
-
Kikuchi K, Togao O, Yamashita K, Momosaka D, Kikuchi Y, Kuga D, Yuhei S, Fujioka Y, Narutomi F, Obara M, Yoshimoto K, and Ishigami K
- Subjects
- Male, Humans, Female, Artificial Intelligence, Diagnosis, Differential, Retrospective Studies, Mutation, Magnetic Resonance Imaging methods, Isocitrate Dehydrogenase genetics, Oligodendroglioma diagnostic imaging, Oligodendroglioma genetics, Brain Neoplasms diagnostic imaging, Brain Neoplasms genetics, Brain Neoplasms pathology, Glioma diagnostic imaging, Glioma genetics, Glioma pathology, Astrocytoma diagnostic imaging, Astrocytoma genetics
- Abstract
Purpose: This study aimed to compare assessments by radiologists, artificial intelligence (AI), and quantitative measurement using synthetic MRI (SyMRI) for differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, and IDH-mutant and 1p/19q-codeleted and to identify the superior method., Methods: Thirty-three cases (men, 14; women, 19) comprising 19 astrocytomas and 14 oligodendrogliomas were evaluated. Four radiologists independently evaluated the presence of the T2-FLAIR mismatch sign. A 3D convolutional neural network (CNN) model was trained using 50 patients outside the test group (28 astrocytomas and 22 oligodendrogliomas) and transferred to evaluate the T2-FLAIR mismatch lesions in the test group. If the CNN labeled more than 50% of the T2-prolonged lesion area, the result was considered positive. The T1/T2-relaxation times and proton density (PD) derived from SyMRI were measured in both gliomas. Each quantitative parameter (T1, T2, and PD) was compared between gliomas using the Mann-Whitney U-test. Receiver-operating characteristic analysis was used to evaluate the diagnostic performance., Results: The mean sensitivity, specificity, and area under the curve (AUC) of radiologists vs. AI were 76.3% vs. 94.7%; 100% vs. 92.9%; and 0.880 vs. 0.938, respectively. The two types of diffuse gliomas could be differentiated using a cutoff value of 2290/128 ms for a combined 90
th percentile of T1 and 10th percentile of T2 relaxation times with 94.4/100% sensitivity/specificity with an AUC of 0.981., Conclusion: Compared to the radiologists' assessment using the T2-FLAIR mismatch sign, the AI and the SyMRI assessments increased both sensitivity and objectivity, resulting in improved diagnostic performance in differentiating gliomas., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF