1. Integrating X-ray phase-contrast imaging and histology for comparative evaluation of breast tissue malignancies in virtual histology analysis.
- Author
-
Donato S, Arana Peña LM, Arfelli F, Brombal L, Colmo L, Longo R, Martellani F, Tromba G, Zanconati F, and Bonazza D
- Subjects
- Humans, Female, X-Rays, X-Ray Microtomography methods, Microscopy, Phase-Contrast methods, Histological Techniques, Imaging, Three-Dimensional methods, Breast Neoplasms diagnostic imaging
- Abstract
Detecting breast tissue alterations is essential for cancer diagnosis. However, inherent bidimensionality limits histological procedures' effectiveness in identifying these changes. Our study applies a 3D virtual histology method based on X-ray phase-contrast microtomography (PhC μ CT), performed at a synchrotron facility, to investigate breast tissue samples including different types of lesions, namely intraductal papilloma, micropapillary intracystic carcinoma, and invasive lobular carcinoma. One-to-one comparisons of X-ray and histological images explore the clinical potential of 3D X-ray virtual histology. Results show that PhC μ CT technique provides high spatial resolution and soft tissue sensitivity, while being non-destructive, not requiring a dedicated sample processing and being compatible with conventional histology. PhC μ CT can enhance the visualization of morphological characteristics such as stromal tissue, fibrovascular core, terminal duct lobular unit, stromal/epithelium interface, basement membrane, and adipocytes. Despite not reaching the (sub) cellular level, the three-dimensionality of PhC μ CT images allows to depict in-depth alterations of the breast tissues, potentially revealing pathologically relevant details missed by a single histological section. Compared to serial sectioning, PhC μ CT allows the virtual investigation of the sample volume along any orientation, possibly guiding the pathologist in the choice of the most suitable cutting plane. Overall, PhC μ CT virtual histology holds great promise as a tool adding to conventional histology for improving efficiency, accessibility, and diagnostic accuracy of pathological evaluation., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF