27 results on '"Bergamini, Ariel"'
Search Results
2. Improving the estimation of area of occupancy for IUCN Red List assessments by using a circular buffer approach
- Author
-
Breiner, Frank T. and Bergamini, Ariel
- Published
- 2018
- Full Text
- View/download PDF
3. High-resolution remote sensing data improves models of species richness
- Author
-
Camathias, Linda, Bergamini, Ariel, Küchler, Meinrad, Stofer, Silvia, and Baltensweiler, Andri
- Published
- 2013
- Full Text
- View/download PDF
4. Epiphytic bryophyte diversity on Madeira Island: Effects of tree species on bryophyte species richness and composition
- Author
-
Sim-Sim, Manuela, Bergamini, Ariel, Luís, Leena, Fontinha, Susana, Martins, Soraia, Lobo, Carlos, and Stech, Michael
- Published
- 2011
- Full Text
- View/download PDF
5. An Elevational Shift of Cryophilous Bryophytes in the Last Century – An Effect of Climate Warming?
- Author
-
Bergamini, Ariel, Ungricht, Stefan, and Hofmann, Heike
- Published
- 2009
- Full Text
- View/download PDF
6. Community Structure and Diversity of Bryophytes and Vascular Plants in Abandoned Fen Meadows
- Author
-
Peintinger, Markus and Bergamini, Ariel
- Published
- 2006
- Full Text
- View/download PDF
7. Bryophytes of Europe Traits (BET) data set: A fundamental tool for ecological studies.
- Author
-
van Zuijlen, Kristel, Nobis, Michael P., Hedenäs, Lars, Hodgetts, Nick, Calleja Alarcón, Juan A., Albertos, Belén, Bernhardt‐Römermann, Markus, Gabriel, Rosalina, Garilleti, Ricardo, Lara, Francisco, Preston, Chris D., Simmel, Josef, Urmi, Edi, Bisang, Irene, and Bergamini, Ariel
- Subjects
BRYOPHYTES ,BIOINDICATORS ,LIFE history theory ,HABITATS - Abstract
Bryophytes are a diverse group of organisms with unique properties, yet they are severely underrepresented in plant trait databases. Building on the recently published European Red List of bryophytes and previous trait compilations, we present the Bryophytes of Europe Traits (BET) data set, including biological traits such as those related to life history, growth habit, sexual and vegetative reproduction; ecological traits such as indicator values, substrate and habitat; and bioclimatic variables based on the species' European range. The data set includes values for 65 traits and 25 bioclimatic variables, containing more than 135,000 trait values with a completeness of 82.7% on average. The data set will enable future studies in bryophyte biology, ecology and conservation, and may help to answer fundamental questions in bryology. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
8. Unveiling the nature of a miniature world: a horizon scan of fundamental questions in bryology.
- Author
-
Patiño, Jairo, Bisang, Irene, Goffinet, Bernard, Hedenäs, Lars, McDaniel, Stuart, Pressel, Silvia, Stech, Michael, Ah-Peng, Claudine, Bergamini, Ariel, Caners, Richard T., Christine Cargill, D., Cronberg, Nils, Duckett, Jeffrey, Eppley, Sarah, Fenton, Nicole J., Fisher, Kirsten, González-Mancebo, Juana, Hasebe, Mitsuyasu, Heinrichs, Jochen, and Hylander, Kristoffer
- Subjects
BRYOPHYTES ,INTERNET surveys ,BIOGEOGRAPHY - Abstract
Half a century since the creation of the International Association of Bryologists, we carried out a review to identify outstanding challenges and future perspectives in bryology. Specifically, we have identified 50 fundamental questions that are critical in advancing the discipline. We have adapted a deep-rooted methodology of horizon scanning to identify key research foci. An initial pool of 258 questions was prepared by a multidisciplinary and international working group of 32 bryologists. A series of online surveys completed by a broader community of researchers in bryology, followed by quality-control steps implemented by the working group, were used to create a list of top-priority questions. This final list was restricted to 50 questions with a broad conceptual scope and answerable through realistic research approaches. The top list of 50 fundamental questions was organised into four general topics: Bryophyte Biodiversity and Biogeography; Bryophyte Ecology, Physiology and Reproductive Biology; Bryophyte Conservation and Management; and Bryophyte Evolution and Systematics. These topics included 9, 19, 14 and 8 questions, respectively. Although many of the research challenges identified are not newly conceived, our horizon-scanning exercise has established a significant foundation for future bryological research. We suggest analytical and conceptual strategies and novel developments for potential use in advancing the research agenda for bryology. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
9. Factors determining bryophyte species richness and community composition on insular siliceous erratic boulders in calcareous landscapes.
- Author
-
Hepenstrick, Daniel, Bergamini, Ariel, Webster, Clare, Ginzler, Christian, Holderegger, Rolf, and Halvorsen, Rune
- Subjects
- *
BOULDERS , *GLACIAL Epoch , *BRYOPHYTES , *NUMBERS of species , *LANDSCAPES , *COMMUNITIES - Abstract
Aim: Pleistocene erratic boulders are rocks that were relocated by glaciers during the Ice Ages. When their geology differs from the geology of the landscape that surrounds them, erratic boulders form habitat islands for regionally rare, edaphically specialised, rock‐dwelling cryptogams (bryophytes, ferns and lichens). Such boulders constitute terrestrial model systems for exploring island biogeographic predictions and the effect of environmental variables on species diversity and community composition, which we studied in order to provide basic knowledge of the ecology, with relevance for the conservation, of these unusual island systems. Location: Siliceous erratic boulders in the calcareous Swiss Plateau and Jura Mountains. Methods: For 160 erratic boulders we recorded all bryophyte species and a diverse set of environmental variables. For all species and for specialist species (acidophile rock‐dwellers) separately, we analysed species–area relationships and nestedness, and explored relationships between environmental variables, species diversity and community composition. Results: We found 138 bryophyte species, 19 of which were specialists of erratic boulders. A steeper species–area curve for boulder specialists than for total species richness underlined the island properties of boulders for specialist species. Large boulders were more likely to harbour numerous boulder specialists and communities on small boulders were nested within the communities present on large boulders. However, at the landscape level small boulders contributed more specialist species than a few large boulders of the same surface area. Erratic boulders near settlements were less likely to harbour boulder specialists. Boulders in open land harboured different and more specialist species than boulders in forests. Conclusions: Large undisturbed erratic boulders in open land harbour rare bryophyte communities with a large number of specialist species. Conservation should thus prioritise this type of boulders. Furthermore, conserving large boulders is logistically easier, and they may function as flagships for small boulders that also contribute to the biodiversity within landscapes. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
10. Effects of elevation and disturbances on the associations between the diversities of bryophyte and macrolichen functional-taxonomic groups on Madeira Island.
- Author
-
Boch, Steffen, Martins, Anabela, Sim-Sim, Manuela, and Bergamini, Ariel
- Subjects
ALTITUDES ,ARCHIPELAGOES ,BRYOPHYTES ,SPECIES diversity ,CONSERVATION biology ,LICHENS ,EPIPHYTIC lichens - Abstract
Biodiversity varies with elevation and is affected by disturbances. However, little is known about how the associations between the diversities of different bryophyte and macrolichen functional-taxonomic groups are altered along elevational gradients and by disturbances. Knowledge on the associations between these functional-taxonomic groups might be of importance in practical conservation biology, as identifying indicator taxa which are easy to monitor could be useful in estimating a wider biodiversity. We sampled the species richness of bryophytes and macrolichens in 92 plots distributed in disturbed and undisturbed stands along elevational gradients in the laurel forest of Madeira. We then calculated a matrix of correlations for all pairwise combinations of 18 different functional-taxonomic bryophyte and macrolichen groups and tested for average differences in correlations with elevation and disturbance history and whether particular functional-taxonomic groups can be used to estimate the richness of other taxa. Associations between the diversities of functional-taxonomic groups within the bryophyte group and within the macrolichen group were always positive and mainly strong. Although changes in elevation and disturbance history changed the associations between the different bryophyte and macrolichen functional-taxonomic groups, we found the species richness of mosses or liverworts to be suitable for predicting overall bryophyte species richness and the species richness of green-algae macrolichens to be reliable for estimating overall macrolichen species richness. Associations between diversities of bryophyte and macrolichen groups were generally weak, suggesting that the two groups have different ecological requirements and do not share the same environmental drivers. The fact that no single bryophyte taxon can be used to predict the richness of any macrolichen group, and vice versa, points to the need to study both bryophytes and lichens. However, we found indicator taxa that are relatively easy to monitor and therefore could be used to estimate the wider biodiversity. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
11. The distribution of climbing chalk on climbed boulders and its impact on rock‐dwelling fern and moss species.
- Author
-
Hepenstrick, Daniel, Bergamini, Ariel, and Holderegger, Rolf
- Subjects
- *
CHALK , *BOULDERS , *FERNS , *ROCK climbing , *CLIMBING plants , *MAGNESIUM carbonate - Abstract
Rock climbing is popular, and the number of climbers rises worldwide. Numerous studies on the impact of climbing on rock‐dwelling plants have reported negative effects, which were mainly attributed to mechanical disturbances such as trampling and removal of soil and vegetation. However, climbers also use climbing chalk (magnesium carbonate hydroxide) whose potential chemical effects on rock‐dwelling species have not been assessed so far. Climbing chalk is expected to alter the pH and nutrient conditions on rocks, which may affect rock‐dwelling organisms. We elucidated two fundamental aspects of climbing chalk. (a) Its distribution along nonoverhanging climbing routes was measured on regularly spaced raster points on gneiss boulders used for bouldering (ropeless climbing at low height). These measurements revealed elevated climbing chalk levels even on 65% of sampling points without any visual traces of climbing chalk. (b) The impact of climbing chalk on rock‐dwelling plants was assessed with four fern and four moss species in an experimental setup in a climate chamber. The experiment showed significant negative, though varied effects of elevated climbing chalk concentrations on the germination and survival of both ferns and mosses. The study thus suggests that along climbing routes, elevated climbing chalk concentration can occur even were no chalk traces are visible and that climbing chalk can have negative impacts on rock‐dwelling organisms. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
12. Evidence for a possible extinction debt in Swiss wetland specialist plants.
- Author
-
Jamin, Anine, Peintinger, Markus, Gimmi, Urs, Holderegger, Rolf, and Bergamini, Ariel
- Subjects
WETLAND plants ,BIOLOGICAL extinction ,NATURE conservation ,TYPHA ,SPECIES diversity ,ENDANGERED species ,WETLANDS ,WETLAND ecology - Abstract
Habitat loss leading to smaller patch sizes and decreasing connectivity is a major threat to global biodiversity. While some species vanish immediately after a change in habitat conditions, others show delayed extinction, that is, an extinction debt. In case of an extinction debt, the current species richness is higher than expected under present habitat conditions.We investigated wetlands of the canton of Zürich in the lowlands of Eastern Switzerland where a wetland loss of 90% over the last 150 years occurred. We related current species richness to current and past patch area and connectivity (in 1850, 1900, 1950, and 2000). We compared current with predicted species richness in wetlands with a substantial loss in patch area based on the species‐area relationship of wetlands without substantial loss in patch area and studied relationships between the richness of different species groups and current and historical area and connectivity of wetland patches.We found evidence of a possible extinction debt for long‐lived wetland specialist vascular plants: in wetlands, which substantially lost patch area, current species richness of long‐lived specialist vascular plants was higher than would have been expected based on current patch area. Additionally and besides current wetland area, historical area also explained current species richness of these species in a substantial and significant way. No evidence for an extinction debt in bryophytes was found.The possible unpaid extinction debt in the wetlands of the canton of Zürich is an appeal to nature conservation, which has the possibility to prevent likely future extinctions of species through specific conservation measures. In particular, a further reduction in wetlands must be prevented and restoration measures must be taken to increase the number of wetlands. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
13. Bryophyte and macrolichen diversity show contrasting elevation relationships and are negatively affected by disturbances in laurel forests of Madeira island.
- Author
-
Boch, Steffen, Martins, Anabela, Ruas, Sara, Fontinha, Susana, Carvalho, Palmira, Reis, Fábio, Bergamini, Ariel, Sim‐Sim, Manuela, and Bruun, Hans Henrik
- Subjects
BRYOPHYTES ,WORLD Heritage Sites ,SPECIES diversity ,ALTITUDES ,ECOLOGICAL disturbances ,ISLANDS ,GEOLOGIC hot spots - Abstract
Questions: Studies on bryophyte and lichen diversity patterns along elevational gradients are scarce, although this approach can serve as space‐for‐time substitution to predict diversity changes because of climate warming. Therefore, we investigated bryophytes and macrolichens in disturbed and undisturbed stands along an elevational gradient in the unique laurel forest of Madeira island by addressing the following questions: (a) how does the species richness of functional‐taxonomic bryophyte and macrolichen groups differ with elevation; (b) how is the species richness of these groups affected by disturbances? Location: UNESCO World Natural Heritage site laurel forest of Madeira island (Madeira, Portugal). Methods: We analyzed species richness of bryophytes and macrolichens in 92 plots in response to elevation and to disturbances. Results: Bryophyte species richness showed a mid‐elevational peak, while macrolichen richness increased with elevation. Disturbed plots harbored on average 20% less bryophyte and macrolichen species than undisturbed plots. Conclusions: The laurel forest of Madeira island is a bryophyte and lichen diversity hotspot. Our findings indicate future biodiversity threats by changing environmental conditions. This calls for the need for a strict protection status of the laurel forest on Madeira island to minimize human‐related disturbances, for the development of management measures that could mitigate climate change effects by maximizing habitat suitability and for the implementation of species conservation programs to prevent future extinctions, in particular of endemic species. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
14. Recommendations for the use of critical terms when applying IUCN red-listing criteria to bryophytes.
- Author
-
Bergamini, Ariel, Bisang, Irene, Hodgetts, Nick, Lockhart, Neil, van Rooy, Jacques, and Hallingbäck, Tomas
- Subjects
- *
BRYOPHYTES , *DEFINITIONS , *TERMS & phrases , *BIOLOGICAL extinction - Abstract
The IUCN Red List is recognised as a robust system for assessing the risk of extinction to organisms, but there are difficulties in applying the criteria to bryophytes and other clonal and colonial organisms. Three critical terms are addressed - generation length, mature individual and severe fragmentation - and definitions given in order to facilitate the use of the IUCN Red List criteria for bryophytes. These recommendations provide a pragmatic and effective way of using the IUCN Red List process for bryophytes and may have a wider application to other clonal organisms. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
15. Fifty shades of red: Lost or threatened bryophytes in Africa.
- Author
-
van Rooy, Jacques, Bergamini, Ariel, and Bisang, Irene
- Subjects
- *
BRYOPHYTES , *ENDANGERED species , *NATURE conservation , *BOTANY , *PLANT conservation , *ENDANGERED plants - Abstract
Background A Red List of threatened bryophytes is lacking for Africa. The International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Bryophyte Specialist Group has recently launched the 'Top 10 Initiative' to identify the 10 species on each continent that are at highest risk of extinction. Objectives The main aim of this paper was to highlight some of the lost or strongly threatened bryophyte species in sub-Saharan Africa and the East African islands and to draw up a Top 10 list for Africa. Method Lost or threatened species have been identified with the help of experts on the bryoflora of Africa, global and regional Red Lists and taxonomic literature. Each species on this candidate list is discussed at the hand of its taxonomy, distribution, habitat, threat and current global or regional Red List status as far as previously assessed. Results Fifty bryophyte species, representing 40 genera and 23 families, have been identified as Top 10 candidates. Of these, 29 are endemic to Africa and 21 are restricted to the East African islands. The majority of the candidate species occur in one of eight 'biodiversity hotspots' with most species (19) in the Madagascar and the Indian Ocean Islands hotspot. Conclusion This is the first list of lost or threatened bryophytes for Africa and the first Top 10 list of the IUCN Bryophyte Specialist Group. It represents an important step towards regional and global Red List assessment of bryophytes, thus meeting the targets of the Updated Global Strategy for Plant Conservation 2011–2020 and priorities of The Shenzhen Declaration on Plant Sciences. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
16. Epiphytes in wooded pastures: Isolation matters for lichen but not for bryophyte species richness.
- Author
-
Kiebacher, Thomas, Keller, Christine, Scheidegger, Christoph, and Bergamini, Ariel
- Subjects
EPIPHYTES ,PASTURE ecology ,SPECIES diversity ,LICHENS ,BRYOPHYTES ,AGRICULTURAL intensification - Abstract
Sylvo-pastoral systems are species-rich man-made landscapes that are currently often severely threatened by abandonment or management intensification. At low tree densities, single trees in these systems represent habitat islands for epiphytic cryptogams. Here, we focused on sycamore maple (Acer pseudoplatanus) wooded pastures in the northern European Alps. We assessed per tree species richness of bryophytes and lichens on 90 sycamore maple trees distributed across six study sites. We analysed the effects of a range of explanatory variables (tree characteristics, environmental variables and isolation measures) on the richness of epiphytic bryophytes and lichens and various functional subgroups (based on diaspore size, habitat preference and red list status). Furthermore, we estimated the effect of these variables on the occurrence of two specific bryophyte species (Tayloria rudolphiana, Orthotrichum rogeri) and one lichen species (Lobaria pulmonaria) of major conservation concern. Bryophytes and lichens, as well as their subgroups, were differently and sometimes contrastingly affected by the variables considered: tree diameter at breast height had no significant effect on bryophytes but negatively affected many lichen groups; tree phenological age positively affected red-listed lichens but not red-listed bryophytes; increasing isolation from neighbouring trees negatively affected lichens but not bryophytes. However, the high-priority bryophyte species T. rudolphiana was also negatively affected by increased isolation at small spatial scales. Orthotrichum rogeri was more frequent on young trees and L. pulmonaria was more frequent on trees with thin stems and large crowns. The results indicate that local dispersal is important for lichens, whereas long distance dispersal seems to be more important for colonisation by bryophytes. Furthermore, our study highlights that different conservation measures need to be taken depending on the taxonomic and functional species group or the individual species that is addressed. In practice, for the conservation of a high overall richness in sylvo-pastoral systems, it is crucial to sustain not only old and large trees but rather a wide range of tree sizes and ages. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
17. Hidden crown jewels: the role of tree crowns for bryophyte and lichen species richness in sycamore maple wooded pastures.
- Author
-
Kiebacher, Thomas, Keller, Christine, Scheidegger, Christoph, and Bergamini, Ariel
- Subjects
CROWNS (Botany) ,WOODY plants ,BRYOPHYTES ,ARCHEGONIATAE ,NONVASCULAR plants - Abstract
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees ( Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
18. Biogeographic patterns of base-rich fen vegetation across Europe.
- Author
-
Jiménez‐Alfaro, Borja, Hájek, Michal, Ejrnaes, Rasmus, Rodwell, John, Pawlikowski, Paweł, Weeda, Eddy J., Laitinen, Jarmo, Moen, Absjørn, Bergamini, Ariel, Aunina, Liene, Sekulová, Lucia, Tahvanainen, Teemu, Gillet, François, Jandt, Ute, Dítě, Daniel, Hájková, Petra, Corriol, Gilles, Kondelin, Hanna, Díaz, Tomás E., and Dengler, Jürgen
- Subjects
FEN ecology ,BIOGEOGRAPHY ,VASCULAR plants ,BRYOPHYTES ,PLANT communities - Abstract
Questions What is the distribution of base-rich fen vegetation and the specialist species along European biogeographic regions? How do the gradients in species composition correlate to geography and climate at continental scale? What are the implications of such patterns for the classification of these habitats? Location Fifteen countries of Central, Western and Northern Europe. Methods We compiled a vegetation plot database of base-rich fens and related communities including vascular plants and bryophytes. The initial data set with 6943 plots was filtered according to the presence of specialists using discriminant analysis. We used DCA to analyse the correlation of species composition with geography and climate, and kriging interpolation for mapping gradients in the study area. Modified TWINSPAN was used to detect major vegetation groups. The results of the whole data set (plot size 1-100 m
2 ) were compared with those obtained from two subsets with plots of 1-5 m2 and 6-30 m2 . Results Most of the specialists were distributed among all the biogeographic regions, but many were more represented in the Alpine than in the Atlantic, Boreal and Continental regions. Variation in species composition was mainly correlated to temperature, precipitation and latitude in the three data sets, showing a major gradient from (1) alpine belt fens characterized by spring species to (2) small sedge fens mainly distributed in mountain regions and (3) boreo-temperate fens reflecting waterlogged conditions. Conclusions Base-rich fen communities are widely distributed across European biogeographic regions, but the Alpine region can be considered as the compositional centre of this vegetation type. Large-scale gradients of species composition are mainly explained by climate, while the influence of latitude is probably correlated to increasing water table in the boreo-temperate regions. These gradients can be better understood by differentiating three major vegetation types, which should be considered when establishing classification systems of base-rich fens in Europe. [ABSTRACT FROM AUTHOR]- Published
- 2014
- Full Text
- View/download PDF
19. Riparian bryophyte communities on Madeira: patterns and determinants of species richness and composition.
- Author
-
Luís, Leena, Bergamini, Ariel, Figueira, Rui, and Sim-Sim, Manuela
- Subjects
- *
BRYOPHYTES , *NONVASCULAR plants , *HABITATS , *HUMIDITY - Abstract
We studied 16 streams evenly distributed over the northern and southern slopes of Madeira in order to investigate the riparian bryoflora. Within each stream, three positions (upper, middle and lower reaches) were delimited and within each position two areas were selected. Within each area two plots (each composed of six microplots of 0.2 m2) were sampled, one in the within-stream habitat (submerged all year round), and the other in the stream-border habitat (submerged only in winter). We found that species composition of the riparian bryophytes is affected by the habitat and position in the stream, but not by the main aspect (northern versus southern slope). Concerning species richness, we found that the stream-border community was clearly richer than the within-stream community, upstream plots were richer than plots downstream, and plots on the northern slope of the island were richer than plots on the southern slope. Habitat type was the most significant factor in determining the richness of the threatened species with more species present in the stream-border habitat. Additive partitioning showed that the between-stream component contributed most to total species richness, especially to the richness of the infrequent and threatened species. However, for the common species, the lowest level, i.e. the within-area component, was the most important. Although northern upstream areas are climatically favourable for many bryophyte species due to their higher humidity, the clear effects found may not only be climate-induced, as these areas are also less disturbed and mostly covered by the natural laurel forest. In the southern, downstream parts only a few species were present. Human impacts are largest in the latter situations and probably contributed to the low species richness. As the streams differed considerably in terms of their bryophyte flora, and most of the species were rare, changes in the riparian areas can greatly affect the bryoflora. Therefore, in order to protect the riparian bryophytes as comprehensively as possible, we emphasize the need for careful monitoring of any changes. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
20. Environmental-friendly farming in Switzerland is not hornwort-friendly
- Author
-
Bisang, Irene, Bergamini, Ariel, and Lienhard, Luc
- Subjects
- *
AGRICULTURAL intensification , *BIODIVERSITY , *AGRICULTURE , *HORNWORTS (Bryophytes) , *AQUATIC plants , *CONSERVATION biology , *TILLAGE , *CAPES (Coasts) - Abstract
Abstract: Traditionally managed arable fields host a specialised flora adapted to regular disturbance through tillage. Agricultural intensification during the 20th century resulted in a pronounced biodiversity decline in European agroecosystems. Anthoceros agrestis and Phaeoceros carolinianus, both largely confined to cultivated land in Central Europe and the only representatives of hornworts in northern Switzerland, are examples of species that decreased in Central Europe during the last century. A repeated survey of 28 arable fields in the Swiss Plateau from 1989 to 1995 demonstrated that crop type and associated farming routines were critical in determining hornwort occurrences. During the 10 years following the completion of this survey, agri-environment schemes were introduced aiming at a more environmental-friendly agricultural production. We re-investigated the selected sites in 2005–2007 to examine whether these programmes favoured hornworts. We found a significant decrease of untilled autumn stubble-fields, which accounted for a decline of hornworts. High relative summer air humidity positively affected hornwort occurrence. Gametophytic populations of both taxa regenerated from the persistent diaspore bank after years of unfavourable conditions. To ensure the long-term persistence of hornworts in the Swiss Plateau, we recommend three alternative modifications of current Swiss agri-environment schemes to be implemented in cereal fields with known hornwort occurrences: (1) Tailored conservation headlands, (2) Autumn stubble-fields and (3) Field margin strips sown with arable flora but without crop plants. The proposed practices will promote other typically ephemeral arable bryophytes and seed plants and are likely to be advantageous also for other organisms, such as farmland birds. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
21. Loss of habitat specialists despite conservation management in fen remnants 1995–2006
- Author
-
Bergamini, Ariel, Peintinger, Markus, Fakheran, Sima, Moradi, Hossein, Schmid, Bernhard, and Joshi, Jasmin
- Subjects
- *
ECOLOGICAL disturbances , *HABITATS , *WETLANDS , *ENDANGERED plants - Abstract
Abstract: Many ecosystems of high conservation value have been shaped by human impacts over centuries. Today, traditional management of semi-natural habitats is a common conservation measure in Europe. However, despite traditional management, habitat remnants may still loose specialist species due to surrounding land-use change or atmospheric nitrogen deposition. To detect trends in species density (2-m2 plot scale) and habitat quality in calcareous fens in the pre-Alps of Switzerland, we surveyed 36 traditionally managed fens in 1995/97 and again in 2005/06 (five plots per fen). The fens occurred at three altitudinal levels (800–1000, 1000–1200, 1200–1400masl) and were either extensively grazed or mown once a year. Despite these traditional management regimes, species density of fen specialists and of all bryophytes decreased during this decade (vascular plant specialists: −9.4%, bryophyte specialists: −14.9%, all bryophytes: −5.7%). Management had no effect on the number of Red-List species and habitat specialists of vascular plants per plot. However, bryophyte species density was more strongly reduced in grazed fens. Species density of vascular plant generalists increased between the two surveys (+8.2%) but not of bryophytes. Among vascular plants, Red-List species decreased from 1.01 to 0.78 species per plot. Furthermore, between the two surveys aboveground plant biomass, mean plant-community indicator values for nutrients and species density of nutrient indicators increased, whereas mean plant indicator values for soil moisture, light and peat, and species density for peat indicators, decreased. We attribute these changes and the loss of specialist species over the past decade mainly to land-use change in the surrounding area and to nutrient inputs. Thus, despite traditional management, calcareous fens in the pre-Alps suffer from ongoing habitat deterioration and endangered plant species remain threatened. For their long-term protection, we suggest to reduce nutrient inputs and, where necessary, to restore hydrology and adjust grazing management. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
22. CHARACTERIZATION OF NUCLEAR MICROSATELLITE LOCI IN THE CALCAREOUS FEN SPECIALIST SCORPIDIUM COSSONII (CALLIERGONACEAE).
- Author
-
KOPHIMAI, YUPPAYAO, CORNEJO, CAROLINA, PEINTINGER, MARKUS, BERGAMINI, ARIEL, and SCHEIDEGGER, CHRISTOPH
- Subjects
MICROSATELLITE repeats ,BRYOPHYTES ,MOSSES ,HYDROLOGY ,HABITATS - Abstract
• Premise of the study: Nuclear microsatellite markers were developed in the fen specialist moss, Scorpidium cossonii , to study genetic diversity and genetic structure of this species in relation to land-use types, habitat fragmentation, and habitat conservation measures. • Methods and Results: The polymorphisms of 14 microsatellite markers were characterized. All primers were tested on 140 gametophytes collected from four populations in Switzerland. The primers amplified di- and trinucleotide repeats with three to 26 alleles per locus. The primers worked also in the two other species of the genus: 14 and 12 primers successfully amplified in S. revolvens and S. scorpioides, respectively. • Conclusions: In future studies, our primers have the potential to provide valuable information on genetic diversity, genetic structure, and on historical and recent gene flow in S . cossonii; they should also enable related research in other Scorpidium species. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
23. Caducous branchlets in Pterigynandrum filiforme (Bryopsida: Pterigynandraceae).
- Author
-
Bergamini, Ariel
- Subjects
- *
BRYOPHYTES , *PLEUROCARPOUS mosses , *ARCHEGONIATAE , *CRYPTOGAMS , *MOSSES , *PLANTS - Abstract
The article provides information on the caducous branchlets in Pterigynandrum filiforme. Pterigynandrum filiforme is considered a pleurocarpous moss that has a circumpolar boreal-montane distribution which grows primarily on rocks and trees. Although caducous branchlets or similar structures are seldom found in pleurocarpous moss, a number of species like Platygyrium repens and Leucodon sciuroides regularly bear caducous branchlets. All of these species and Pterigynandrum filiforme are considered dioecious and are either saxicolous or epiphytic.
- Published
- 2006
- Full Text
- View/download PDF
24. Solitary trees increase the diversity of vascular plants and bryophytes in pastures.
- Author
-
Kiebacher, Thomas, Scheidegger, Christoph, and Bergamini, Ariel
- Subjects
- *
VASCULAR plants , *BRYOPHYTES , *PLANT diversity , *PASTURE ecology , *LAND use - Abstract
Wooded pastures are semi-natural ecosystems that are often considered biodiversity hotspots and are valuable for nature conservation. Ongoing land-use changes, such as management intensification, threaten these ecosystems. Several studies have assessed the effect of tree density and cover on plant species richness, but the individual effects of single trees have not been addressed previously. We studied the effects of single sycamore maple trees ( Acer pseudoplatanus ) in sycamore maple wooded pastures on vascular plant and ground bryophyte species richness at six sites in the northern European Alps. In total, we found 346 vascular plant species and 264 bryophyte species. Alpha- and beta-diversity were positively influenced by the trees and positively related to tree size- and tree age-related variables. The positive effect of the trees on the species richness of epigeic bryophytes was reduced at high levels of management intensity, possibly due to severe disturbance by cattle trampling under the trees. However, our data showed that the diversity of the ground vegetation increased when trees were present, even in intensively managed pastures. Our findings highlight the high species richness present in sycamore maple wooded pastures at different spatial scales. The trees in sycamore maple wooded pastures can thus be considered keystone structures providing a range of important functions and conservation policies should particularly emphasize the conservation of large and old trees as well as the planting of young trees in these ecosystems. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
25. Extinction risk of European bryophytes predicted by bioclimate and traits.
- Author
-
van Zuijlen, Kristel, Bisang, Irene, Nobis, Michael P., and Bergamini, Ariel
- Subjects
- *
ENDANGERED species , *BIOLOGICAL extinction , *BRYOPHYTES , *RANDOM forest algorithms , *PLANT size , *CLIMATE extremes - Abstract
Extinction risk is not randomly distributed among species but depends on species traits, their relationship to climate and land use, and corresponding threats by global change. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, this is still largely lacking for bryophytes. Here, we used random forest models to study which biological and ecological traits and bioclimatic variables are important predictors for extinction risk in European bryophytes. We hypothesized that species with a high extinction risk have a short life span, low dispersal capacities, and are more likely specialists than generalists in terms of ecological traits and bioclimate. Overall, we found bioclimatic variables to be the most important predictors for extinction risk, most notably precipitation seasonality, and related ecological traits such as continentality and elevational range. Important biological traits were plant size, life strategy and sporophyte production. In general, species living at climatic extremes and/or those with a narrow environmental range are more likely to be threatened. In addition, small-sized species and/or species with low reproductive effort and/or larger spore size are more likely to be threatened. Our findings imply that climate change may become an important driver of bryophytes extinction risk and that biological and ecological traits will be most relevant for species in coping with future threats. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
26. Three decades of field surveys reveal a decline of arable bryophytes in the Swiss lowlands despite agri-environment schemes.
- Author
-
Bisang, Irene, Lienhard, Luc, and Bergamini, Ariel
- Subjects
- *
BRYOPHYTES , *AGRICULTURAL intensification , *BIRD breeding , *ENVIRONMENTAL degradation , *CROP rotation , *GRASSLAND conservation , *WILD flowers - Abstract
• Farmland biodiversity has declined dramatically due to agricultural intensification. • Agri-environment schemes, adopted to halt biodiversity loss, show moderate effects. • Typical arable bryophyte specialists have declined steeply despite such schemes. • Suitable habitats, mainly untilled stubble fields, have nearly disappeared. • Sustaining arable bryophyte specialists requires tailored management of crop fields. Agricultural intensification represents one of the major drivers for the dramatic loss of biodiversity worldwide. To halt the decline of farmland biodiversity, Switzerland adopted agri-environment schemes (AES) in 1998. Here, we monitored the occurrence, abundance and habitats of two species of arable bryophyte specialists, the Field hornwort (Anthoceros agrestis) and the Carolina hornwort (Phaeoceros carolinianus), in 28 crop fields in the intensively cultivated Swiss Plateau from 1991–2018, to investigate the effects of arable management, AES directives, and weather conditions on their performance. The target species are characteristic of the specialized short-lived arable bryophyte flora of Central Europe that depend on bare substrate in low-intensively cultivated and regularly ploughed fields. Trends in their occurrence thus reflect in many respects the status of the arable bryophytes in cultivated fields. Hornwort occurrence significantly declined between 1991 and 2018. A strong decrease in stubble fields that remain unmanaged after harvest, the favourite habitat for many arable specialists in the study area, largely accounted for the decline. Stubble fields nearly disappeared in the study area because of a gradual reduction in the cultivation area of cereals and the increasing practice of immediate post-harvest tillage. The latter is common in intensive arable farming and was accentuated by AES directives amended in 2005. Hornwort occurrences were positively affected by high air humidity during summer, but weather effects were subordinate to management effects. We propose tailored amendments of AES regulations, that are implemented at selected sites, to maintain the characteristic arable specialist bryophytes in the Swiss Plateau: crop rotation with adequate proportions of cereals that are regularly ploughed but not before the end of October, no post-harvest processing of stubble fields, and optimization of the existing instrument 'Biodiversity Promoting Areas', e.g., short-term fallows in crop fields. Late-autumn or overwintering stubbles and short-term fallows will benefit many other organisms that depend on extensively managed open habitats, for example arable wildflowers, farmland breeding birds and specialized arthropods. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
27. Benchmarking plant diversity of Palaearctic grasslands and other open habitats
- Author
-
Monika Janišová, Georgios Fotiadis, Honor C. Prentice, Farshid Memariani, Ivan I. Moysiyenko, Pavel Lustyk, Zdenka Preislerová, Hristo Pedashenko, Francesco Santi, Atushi Ushimaru, Steffen Boch, Galina Savchenko, Fabrizio Buldrini, Irena Axmanová, Milan Chytrý, Jiri Dolezal, Denys Vynokurov, Marta Czarniecka-Wiera, Zdeňka Lososová, Robert K. Peet, Simon Stifter, Ricarda Pätsch, Koenraad Van Meerbeek, Alba Gutiérrez-Girón, Simona Maccherini, András Kelemen, Thomas Becker, Michal Hájek, Christian Pedersen, Stefan Widmer, Remigiusz Pielech, Vladimir Ronkin, Kai Jensen, Anna Wróbel, Cristina Chocarro, Sebastian Świerszcz, Lei Deng, Arkadiusz Nowak, Luisa Conti, Eulàlia Pladevall-Izard, Swantje Löbel, Jonathan Etzold, Jan Peters, Hans Henrik Bruun, Elisabeth M. Hüllbusch, Anna Kuzemko, Martin Magnes, Rayna Natcheva, Riccardo Guarino, Joaquín Molero Mesa, Vasco Silva, Pavel Dřevojan, Iuliia Vasheniak, Jan Lepš, Péter Török, Timo Conradi, Marcin Nobis, Aaron Pérez-Haase, Yun Wang, María Rosa Fernández Calzado, Ilaria Bonini, Massimo Terzi, Meelis Pärtel, Liqing Zhao, Csaba Tölgyesi, Frank Weiser, Philipp Kirschner, Juan Antonio Campos, Zuzana Plesková, László Demeter, George Fayvush, Asun Berastegi, Behlül Güler, Diego Liendo, Nancy Langer, Manfred Finckh, Martin Diekmann, Florian Jeltsch, Anke Jentsch, Robin J. Pakeman, Tobias Ceulemans, Javier Etayo, Orsolya Valkó, Carly J. Stevens, Kaoru Kakinuma, Michele Aleffi, Jiří Danihelka, Alicia Teresa Rosario Acosta, Balázs Teleki, Laura M. E. Sutcliffe, Solvita Rusina, Rosario G. Gavilán, Pieter De Frenne, Michele Mugnai, Arantzazu L. Luzuriaga, Marc Olivier Büchler, Lubomír Tichý, Soroor Rahmanian, Zsolt Molnár, Itziar García-Mijangos, Jürgen Dengler, Harald Pauli, Asuka Koyama, Anvar Sanaei, Cecilia Dupré, Parvaneh Ashouri, Vladimir G. Onipchenko, Ute Jandt, Zoltán Bátori, François Gillet, Alla Aleksanyan, Ariel Bergamini, Corrado Marcenò, Constantin Mardari, Nadezda Tsarevskaya, José Luis Benito Alonso, Łukasz Kozub, Ottar Michelsen, Felix May, Goffredo Filibeck, Jan Roleček, Jalil Noroozi, Karsten Wesche, Eva Šmerdová, Michael Manthey, Triin Reitalu, Ana M. Sánchez, Eszter Ruprecht, Regina Lindborg, Idoia Biurrun, Risto Virtanen, Gianpietro Giusso del Galdo, Helmut Mayrhofer, Annika K. Jägerbrand, Mansoureh Kargar, Chrisoula B. Pirini, Dariia Shyriaieva, Sabina Burrascano, Esther Baumann, Christian Dolnik, Kristina Merunková, Ching-Feng Li, Eliane S. Meier, Kuber Prasad Bhatta, Mercedes Herrera, Klaus Ecker, Mohammad Farzam, Marta Torca, Nele Ingerpuu, Philippe Jeanneret, Francesco de Bello, Alireza Naqinezhad, Tünde Farkas, Elena Belonovskaya, Josep M. Ninot, Elias Afif, Munemitsu Akasaka, Lorenzo Lazzaro, András Vojtkó, Leonardo Rosati, Jianshuang Wu, Arshad Ali, Sándor Bartha, Zuoqiang Yuan, Wenhong Ma, Patryk Czortek, Marta Carboni, Franz Essl, Hannah J. White, Carmen Van Mechelen, Brigitta Erschbamer, Marek Malicki, Vasyl Budzhak, Jutta Kapfer, Manuela Winkler, Angela Lomba, Hamid Ejtehadi, Judit Sonkoly, Ingrid Turisová, Thomas Vanneste, Laura Cancellieri, Sonja Škornik, David Zelený, Zygmunt Kącki, Alessandro Chiarucci, Salza Palpurina, Sigrid Suchrow, Kathrin Kiehl, Amir Talebi, Beata Cykowska-Marzencka, Borja Jiménez-Alfaro, Nataša Pipenbaher, Frank Yonghong Li, Wendy Fjellstad, Ivana Vitasović-Kosić, Maria Pilar Rodríguez-Rojo, Álvaro Bueno, Daniele Viciani, Juha M. Alatalo, Emelie Waldén, Sahar Ghafari, Grzegorz Swacha, Anna Mária Csergő, Lu Wen, Balázs Deák, Ioannis Tsiripidis, Luis Villar, Maria-Teresa Sebastià, Svetlana Aćić, Halime Moradi, Kiril Vassilev, Daniel García-Magro, Sebastian Wolfrum, Iva Apostolova, Marko Sabovljevic, Giovanna Potenza, Monika Staniaszek-Kik, Iwona Dembicz, Aveliina Helm, Marta Czarnocka-Cieciura, Marta Gaia Sperandii, John-Arvid Grytnes, Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Biurrun I., Pielech R., Dembicz I., Gillet F., Kozub L., Marceno C., Reitalu T., Van Meerbeek K., Guarino R., Chytry M., Pakeman R.J., Preislerova Z., Axmanova I., Burrascano S., Bartha S., Boch S., Bruun H.H., Conradi T., De Frenne P., Essl F., Filibeck G., Hajek M., Jimenez-Alfaro B., Kuzemko A., Molnar Z., Partel M., Patsch R., Prentice H.C., Rolecek J., Sutcliffe L.M.E., Terzi M., Winkler M., Wu J., Acic S., Acosta A.T.R., Afif E., Akasaka M., Alatalo J.M., Aleffi M., Aleksanyan A., Ali A., Apostolova I., Ashouri P., Batori Z., Baumann E., Becker T., Belonovskaya E., Benito Alonso J.L., Berastegi A., Bergamini A., Bhatta K.P., Bonini I., Buchler M.-O., Budzhak V., Bueno A., Buldrini F., Campos J.A., Cancellieri L., Carboni M., Ceulemans T., Chiarucci A., Chocarro C., Conti L., Csergo A.M., Cykowska-Marzencka B., Czarniecka-Wiera M., Czarnocka-Cieciura M., Czortek P., Danihelka J., de Bello F., Deak B., Demeter L., Deng L., Diekmann M., Dolezal J., Dolnik C., Drevojan P., Dupre C., Ecker K., Ejtehadi H., Erschbamer B., Etayo J., Etzold J., Farkas T., Farzam M., Fayvush G., Fernandez Calzado M.R., Finckh M., Fjellstad W., Fotiadis G., Garcia-Magro D., Garcia-Mijangos I., Gavilan R.G., Germany M., Ghafari S., Giusso del Galdo G.P., Grytnes J.-A., Guler B., Gutierrez-Giron A., Helm A., Herrera M., Hullbusch E.M., Ingerpuu N., Jagerbrand A.K., Jandt U., Janisova M., Jeanneret P., Jeltsch F., Jensen K., Jentsch A., Kacki Z., Kakinuma K., Kapfer J., Kargar M., Kelemen A., Kiehl K., Kirschner P., Koyama A., Langer N., Lazzaro L., Leps J., Li C.-F., Li F.Y., Liendo D., Lindborg R., Lobel S., Lomba A., Lososova Z., Lustyk P., Luzuriaga A.L., Ma W., Maccherini S., Magnes M., Malicki M., Manthey M., Mardari C., May F., Mayrhofer H., Meier E.S., Memariani F., Merunkova K., Michelsen O., Molero Mesa J., Moradi H., Moysiyenko I., Mugnai M., Naqinezhad A., Natcheva R., Ninot J.M., Nobis M., Noroozi J., Nowak A., Onipchenko V., Palpurina S., Pauli H., Pedashenko H., Pedersen C., Peet R.K., Perez-Haase A., Peters J., Pipenbaher N., Pirini C., Pladevall-Izard E., Pleskova Z., Potenza G., Rahmanian S., Rodriguez-Rojo M.P., Ronkin V., Rosati L., Ruprecht E., Rusina S., Sabovljevic M., Sanaei A., Sanchez A.M., Santi F., Savchenko G., Sebastia M.T., Shyriaieva D., Silva V., Skornik S., Smerdova E., Sonkoly J., Sperandii M.G., Staniaszek-Kik M., Stevens C., Stifter S., Suchrow S., Swacha G., Swierszcz S., Talebi A., Teleki B., Tichy L., Tolgyesi C., Torca M., Torok P., Tsarevskaya N., Tsiripidis I., Turisova I., Ushimaru A., Valko O., Van Mechelen C., Vanneste T., Vasheniak I., Vassilev K., Viciani D., Villar L., Virtanen R., Vitasovic-Kosic I., Vojtko A., Vynokurov D., Walden E., Wang Y., Weiser F., Wen L., Wesche K., White H., Widmer S., Wolfrum S., Wrobel A., Yuan Z., Zeleny D., Zhao L., Dengler J., Biurrun, Idoia, Pielech, Remigiusz, Dembicz, Iwona, Gillet, Françoi, Kozub, Łukasz, Marcenò, Corrado, Reitalu, Triin, Van Meerbeek, Koenraad, Guarino, Riccardo, Chytrý, Milan, Pakeman, Robin J., Preislerová, Zdenka, Axmanová, Irena, Burrascano, Sabina, Bartha, Sándor, Boch, Steffen, Bruun, Hans Henrik, Conradi, Timo, De Frenne, Pieter, Essl, Franz, Filibeck, Goffredo, Hájek, Michal, Jiménez‐Alfaro, Borja, Kuzemko, Anna, Molnár, Zsolt, Pärtel, Meeli, Pätsch, Ricarda, Prentice, Honor C., Roleček, Jan, Sutcliffe, Laura M.E., Terzi, Massimo, Winkler, Manuela, Wu, Jianshuang, Aćić, Svetlana, Acosta, Alicia T.R., Afif, Elia, Akasaka, Munemitsu, Alatalo, Juha M., Aleffi, Michele, Aleksanyan, Alla, Ali, Arshad, Apostolova, Iva, Ashouri, Parvaneh, Bátori, Zoltán, Baumann, Esther, Becker, Thoma, Belonovskaya, Elena, Benito Alonso, José Lui, Berastegi, Asun, Bergamini, Ariel, Bhatta, Kuber Prasad, Bonini, Ilaria, Büchler, Marc‐Olivier, Budzhak, Vasyl, Bueno, Álvaro, Buldrini, Fabrizio, Campos, Juan Antonio, Cancellieri, Laura, Carboni, Marta, Ceulemans, Tobia, Chiarucci, Alessandro, Chocarro, Cristina, Conti, Luisa, Csergő, Anna Mária, Cykowska‐Marzencka, Beata, Czarniecka‐Wiera, Marta, Czarnocka‐Cieciura, Marta, Czortek, Patryk, Danihelka, Jiří, de Bello, Francesco, Deák, Baláz, Demeter, László, Deng, Lei, Diekmann, Martin, Dolezal, Jiri, Dolnik, Christian, Dřevojan, Pavel, Dupré, Cecilia, Ecker, Klau, Ejtehadi, Hamid, Erschbamer, Brigitta, Etayo, Javier, Etzold, Jonathan, Farkas, Tünde, Farzam, Mohammad, Fayvush, George, Fernández Calzado, María Rosa, Finckh, Manfred, Fjellstad, Wendy, Fotiadis, Georgio, García‐Magro, Daniel, García‐Mijangos, Itziar, Gavilán, Rosario G., Germany, Marku, Ghafari, Sahar, Giusso del Galdo, Gian Pietro, Grytnes, John‐Arvid, Güler, Behlül, Gutiérrez‐Girón, Alba, Helm, Aveliina, Herrera, Mercede, Hüllbusch, Elisabeth M., Ingerpuu, Nele, Jägerbrand, Annika K., Jandt, Ute, Janišová, Monika, Jeanneret, Philippe, Jeltsch, Florian, Jensen, Kai, Jentsch, Anke, Kącki, Zygmunt, Kakinuma, Kaoru, Kapfer, Jutta, Kargar, Mansoureh, Kelemen, Andrá, Kiehl, Kathrin, Kirschner, Philipp, Koyama, Asuka, Langer, Nancy, Lazzaro, Lorenzo, Lepš, Jan, Li, Ching‐Feng, Li, Frank Yonghong, Liendo, Diego, Lindborg, Regina, Löbel, Swantje, Lomba, Angela, Lososová, Zdeňka, Lustyk, Pavel, Luzuriaga, Arantzazu L., Ma, Wenhong, Maccherini, Simona, Magnes, Martin, Malicki, Marek, Manthey, Michael, Mardari, Constantin, May, Felix, Mayrhofer, Helmut, Meier, Eliane Seraina, Memariani, Farshid, Merunková, Kristina, Michelsen, Ottar, Molero Mesa, Joaquín, Moradi, Halime, Moysiyenko, Ivan, Mugnai, Michele, Naqinezhad, Alireza, Natcheva, Rayna, Ninot, Josep M., Nobis, Marcin, Noroozi, Jalil, Nowak, Arkadiusz, Onipchenko, Vladimir, Palpurina, Salza, Pauli, Harald, Pedashenko, Hristo, Pedersen, Christian, Peet, Robert K., Pérez‐Haase, Aaron, Peters, Jan, Pipenbaher, Nataša, Pirini, Chrisoula, Pladevall‐Izard, Eulàlia, Plesková, Zuzana, Potenza, Giovanna, Rahmanian, Soroor, Rodríguez‐Rojo, Maria Pilar, Ronkin, Vladimir, Rosati, Leonardo, Ruprecht, Eszter, Rusina, Solvita, Sabovljević, Marko, Sanaei, Anvar, Sánchez, Ana M., Santi, Francesco, Savchenko, Galina, Sebastià, Maria Teresa, Shyriaieva, Dariia, Silva, Vasco, Škornik, Sonja, Šmerdová, Eva, Sonkoly, Judit, Sperandii, Marta Gaia, Staniaszek‐Kik, Monika, Stevens, Carly, Stifter, Simon, Suchrow, Sigrid, Swacha, Grzegorz, Świerszcz, Sebastian, Talebi, Amir, Teleki, Baláz, Tichý, Lubomír, Tölgyesi, Csaba, Torca, Marta, Török, Péter, Tsarevskaya, Nadezda, Tsiripidis, Ioanni, Turisova, Ingrid, Ushimaru, Atushi, Valkó, Orsolya, Van Mechelen, Carmen, Vanneste, Thoma, Vasheniak, Iuliia, Vassilev, Kiril, Viciani, Daniele, Villar, Lui, Virtanen, Risto, Vitasović‐Kosić, Ivana, Vojtkó, Andrá, Vynokurov, Deny, Waldén, Emelie, Wang, Yun, Weiser, Frank, Wen, Lu, Wesche, Karsten, White, Hannah, Widmer, Stefan, Wolfrum, Sebastian, Wróbel, Anna, Yuan, Zuoqiang, Zelený, David, Zhao, Liqing, Dengler, Jürgen, Bavarian Research Foundation, International Association for Vegetation Science, Eusko Jaurlaritza, Czech Science Foundation, Estonian Research Council, Scottish Government's Rural and Environment Science and Analytical Services, Ministero dell'Istruzione, dell'Università e della Ricerca, Agencia Estatal de Investigación (España), Science and Technology Center in Ukraine, Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, Swedish Institute, Foundation for Introducing Talent of Nanjing University of Information Science and Technology, Hebei Province, Academy of Sciences of the Czech Republic, Hungarian Academy of Sciences, Tyrolean Science Fund, Austrian Academy of Sciences, University of Innsbruck, Ministerio de Economía y Competitividad (España), Comunidad de Madrid, National Geographic Society, Slovak Academy of Sciences, Fundação para a Ciência e a Tecnologia (Portugal), National Science Centre (Poland), Russian Science Foundation, University of Latvia Foundation, Slovenian Research Agency, Biurrun, I, Pielech, R, Dembicz, I, Gillet, F, Kozub, L, Marceno, C, Reitalu, T, Van Meerbeek, K, Guarino, R, Chytry, M, Pakeman, RJ, Preislerova, Z, Axmanova, I, Burrascano, S, Bartha, S, Boch, S, Bruun, HH, Conradi, T, De Frenne, P, Essl, F, Filibeck, G, Hajek, M, Jimenez-Alfaro, B, Kuzemko, A, MOLNAR, Zsolt, Partel, M, Patsch, R, Prentice, HC, Rolecek, J, Sutcliffe, LME, Terzi, M, Winkler, M, Wu, JS, Acic, S, Acosta, ATR, Afif, E, Akasaka, M, Alatalo, JM, Aleffi, M, Aleksanyan, A, Ali, A, Apostolova, I, Ashouri, P, Batori, Z, Baumann, E, BECKER, T, Belonovskaya, E, Alonso, JLB, Berastegi, A, Bergamini, A, Bhatta, KP, Bonini, I, Buchler, MO, Budzhak, V, Bueno, A, Buldrini, F, Campos, JA, Cancellieri, L, Carboni, M, Ceulemans, T, Chiarucci, A, Chocarro, C, Conti, L, Csergo, AM, Cykowska-Marzencka, B, Czarniecka-Wiera, M, Czarnocka-Cieciura, M, Czortek, P, Danihelka, J, Bello, F, Deak, B, Demeter, L, Deng, L, Diekmann, M, Dolezal, J, Dolnik, C, Drevojan, P, Dupre, C, Ecker, K, Ejtehadi, H, Erschbamer, B, Etayo, J, Etzold, J, Farkas, T, Farzam, M, Fayvush, G, Calzado, MRF, Finckh, M, Fjellstad, W, Fotiadis, G, Garcia-Magro, D, Garcia-Mijangos, I, Gavilan, RG, Germany, M, Ghafari, S, del Galdo, GPG, Grytnes, JA, Guler, B, Gutierrez-Giron, A, Helm, A, Herrera, M, Hullbusch, EM, Ingerpuu, N, Jagerbrand, AK, Jandt, U, Janisova, M, Jeanneret, P, Jeltsch, F, Jensen, K, Jentsch, A, Kacki, Z, Kakinuma, K, Kapfer, J, Kargar, M, Kelemen, A, Kiehl, K, Kirschner, P, Koyama, A, Langer, N, Lazzaro, L, Leps, J, Li, CF, Li, FY, Liendo, D, Lindborg, R, Lobel, S, Lomba, A, Lososova, Z, Lustyk, P, Luzuriaga, AL, Ma, WH, Maccherini, S, Magnes, M, Malicki, M, Manthey, M, Mardari, C, May, F, Mayrhofer, H, Meier, ES, Memariani, F, Merunkova, K, Michelsen, O, Mesa, JM, Moradi, H, Moysiyenko, I, Mugnai, M, Naqinezhad, A, Natcheva, R, Ninot, JM, Nobis, M, Noroozi, J, Nowak, A, Onipchenko, V, Palpurina, S, Pauli, H, Pedashenko, H, Pedersen, C, Peet, RK, Perez-Haase, A, Peters, J, Pipenbaher, N, Pirini, C, Pladevall-Izard, E, Pleskova, Z, Potenza, G, Rahmanian, S, Rodriguez-Rojo, MP, Ronkin, V, Rosati, L, Ruprecht, E, Rusina, S, Sabovljevic, M, Sanaei, A, Sanchez, AM, Santi, F, Savchenko, G, Sebastia, MT, Shyriaieva, D, Silva, V, Skornik, S, Smerdova, E, Sonkoly, J, Sperandii, MG, Staniaszek-Kik, M, Stevens, C, Stifter, S, Suchrow, S, Swacha, G, Swierszcz, S, Talebi, A, Teleki, B, Tichy, L, Tolgyesi, C, Torca, M, Torok, P, Tsarevskaya, N, Tsiripidis, I, Turisova, I, Ushimaru, A, Valko, O, VAN MECHELEN, Carmen, Vanneste, T, Vasheniak, I, Vassilev, K, Viciani, D, Villar, L, Virtanen, R, Vitasovic-Kosic, I, Vojtko, A, Vynokurov, D, Walden, E, Wang, Y., Weiser, F, Wen, L, Wesche, K, White, H, Widmer, S, Wolfrum, S, Wrobel, A, Yuan, ZQ, Zeleny, D, Zhao, LQ, Dengler, J., Jiménez‐alfaro, Borja, Sutcliffe, Laura M. E., Acosta, Alicia, Büchler, Marc‐olivier, Cykowska‐marzencka, Beata, Czarniecka‐wiera, Marta, Czarnocka‐cieciura, Marta, Bello, Francesco, García‐magro, Daniel, García‐mijangos, Itziar, Grytnes, John‐arvid, Gutiérrez‐girón, Alba, Li, Ching‐feng, Pérez‐haase, Aaron, Pladevall‐izard, Eulàlia, Rodríguez‐rojo, Maria Pilar, Staniaszek‐kik, Monika, Turisová, Ingrid, and Vitasović‐kosić, Ivana
- Subjects
Vascular plant ,SURROGATE ,333.7: Landflächen, Naturerholungsgebiete ,Biome ,Lichen ,open habitat ,Plant Science ,DATABASES ,Benchmark ,Grassland ,Scale dependence ,benchmark ,RICHNESS HOTSPOTS ,Vegetation type ,Taxonomic rank ,SCALE ,Macroecology ,ComputingMilieux_MISCELLANEOUS ,2. Zero hunger ,bryophyte ,GLOBAL PATTERNS ,geography.geographical_feature_category ,Ecology ,Open habitat ,vascular plant ,Forestry ,ichen ,Vegetation ,Vegetation plot ,Palaearctic ,580: Pflanzen (Botanik) ,Geography ,Habitat ,scale dependence ,fine-grain biodiversity ,grassland ,GrassPlot Diversity Explorer ,lichen ,species–area relationship ,vegetation plot ,Life Sciences & Biomedicine ,CONSERVATION ,Environmental Sciences & Ecology ,Fine-grain biodiversity ,benchmark, bryophyte, fine-grain biodiversity, grassland, GrassPlot Diversity Explorer, lichen, open habitat, Palaearctic, scale dependence, species–area relationship, vascular plant, vegetation plot ,species-area relationship ,benchmark, bryophyte, fine-grain biodiversity, grassland, GrassPlot Diversity Explorer, lichen, open habitat, Palaearctic, scale dependence, species-area relationship, vascular plant, vegetation plot ,Species–area relationship ,Science & Technology ,Plant Sciences ,Biology and Life Sciences ,15. Life on land ,plant diversity ,13. Climate action ,Bryophyte ,SPECIES-AREA RELATIONSHIPS ,VASCULAR PLANTS ,BIODIVERSITY ,Species richness ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,BRYOPHYTES - Abstract
© 2021 The Authors., Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology., GrassPlot development has been supported by the Bavarian Research Alliance (BayIntAn_UBT_2017_58), the Eurasian Dry Grassland Group (EDGG) and the International Association for Vegetation Science (IAVS); IB, CorM, JAC, IGM, DGM, MHe, DL and MTo were supported by the Basque Government (IT936‐16); CorM, IAx, MCh, JDa, PD, MHá, ZL, ZPr, EŠ and LT were supported by the Czech Science Foundation (19‐28491X); TR was supported by the Estonian Research Council (PUT1173); RJP was funded by the Strategic Research Programme of the Scottish Government’s Rural and Environmental Science and Analytical Services Division”; SBa was supported by the GINOP‐2.3.2‐15‐2016‐00019 project; GFi was partially supported by the MIUR initiative “Department of excellence” (Law 232/2016)"; BJA was funded by the Spanish Research Agency (grant AEI/ 10.13039/501100011033); AK, VB, IM, DS, IV and DV were supported by the National Research Foundation of Ukraine (2020.01/0140); MP and AH were supported by the Estonian Research Council (PRG874, PRG609), and the European Regional Development Fund (Centre of Excellence EcolChange); Data collection of HCP was funded by FORMAS (Swedish Research Council for Environment, Agricultural Science and Spatial Planning) and The Swedish Institute; JR was supported by the Czech Science Foundation (grant No. 20‐09895S) and the long‐term developmental project of the Czech Academy of Sciences (RVO 67985939); ATRA was funded by the Grant of Excellence Departments, MIUR‐Italy (ARTICOLO 1, COMMI 314 – 337 LEGGE 232/2016); JMA was supported by Carl Tryggers stiftelse för vetenskaplig forskning and Qatar Petroleum; AAli was supported by the Jiangsu Science and Technology Special Project (Grant No. BX2019084), and Metasequoia Faculty Research Startup Funding at Nanjing Forestry University (Grant No. 163010230), and he is currently supported by Hebei University through Faculty Research Startup Funding Program; ZB was supported by the NKFI K 124796 grant; The GLORIA‐ Aragón project of JLBA was funded by the Dirección General de Cambio Climático del Gobierno de Aragón (Spain); MCs and LDem were supported by DG Environment through the European Forum on Nature Conservation and Pastoralism and Barbara Knowles Fund, in collaboration with Pogány‐havas Association, Romania; JDa was partially supported by long‐term research development project no. RVO 67985939 of the Czech Academy of Sciences; BD and OV were supported by the NKFI KH 126476, NKFI KH 130338, NKFI FK 124404 and NKFI FK 135329 grants; BD, OV and AKe were supported by the Bolyai János Scholarship of the Hungarian Academy of Sciences; BE was funded by the Environmental Department of the Tyrolean Federal State Government, the MAB Programme of the Austrian Academy of Science, the Mountain Agriculture Research Unit and the Alpine Research Centre Obergurgl of Innsbruck University. The GLORIA projects of BE were funded by the EU project no. EVK2‐CT‐2000‐00056, the Earth System Sciences Program of the Austrian Academy of Sciences (project MEDIALPS), the Amt für Naturparke, Autonome Provinz Bozen‐Südtirol, the Südtiroler Wissenschaftsfonds and the Tiroler Wissenschaftsfonds; RGG was supported by the Spanish Ministry of Research to sample GLORIA sites in central Spain (CGL 2008‐00901/BOS) and present works by the Autonomous Region of Madrid (REMEDINAL TE‐CM, S2018/EMT‐4338); MJ was supporteLatviaed by Latvia Grant No. 194051; NP and SŠ were partly supported by the Slovenian Research Agency, core fundings P1‐0403 and J7‐1822.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.