1. Single hind limb burn injury to mice alters nuclear factor-κB expression and [¹⁸F] 2-fluoro-2-deoxy-D-glucose uptake.
- Author
-
Carter EA, Hamrahi V, Paul K, Bonab AA, Jung W, Tompkins RG, and Fischman AJ
- Subjects
- Animals, Disease Models, Animal, Fluorodeoxyglucose F18 pharmacokinetics, Hindlimb blood supply, Laser-Doppler Flowmetry, Male, Mice, Radiopharmaceuticals pharmacokinetics, Tissue Distribution, Adipose Tissue, Brown metabolism, Burns metabolism, Glucose metabolism, Hindlimb injuries, NF-kappa B metabolism
- Abstract
Burn trauma to the extremities can produce marked systemic effects in mice. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism ([18F] 2-fluoro-2-deoxy-D-glucose [18FDG] uptake) by brown adipose tissue (BAT) and nuclear factor (NF)-κB activity in several tissues including skeletal muscle. This study examined the effect of a single hind limb burn in mice on 18FDG uptake by NF-κB activity in vivo, and blood flow was determined by laser Doppler techniques. Male NF-κB luciferase reporter mice (28-30 g) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham-treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 mL, i.p.). The individual animals were placed in wire bottom cages with no food and free access to water. After 24 hours, the animals were imaged with laser Doppler for measuring blood flow in the hind limb. The animals were then unanesthetized with 50 μCi of FDG or luciferin (1.0 mg, i.v.) via tail vein. Five minutes after luciferin injection, NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. One hour after 18FDG injection, the animals were killed with carbon dioxide overdose, and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full-thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than that in the contralateral limb. Similarly, luciferase activity and blood flow in the burned leg were lower than those in the contralateral leg. 18FDG uptake by BAT and heart increased, whereas that by brain decreased. In conclusion, the present study suggests that burn injury to a single leg decreased FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression compared with the contralateral leg and the uninjured skeletal muscle of the sham but activated NF-κB expression in a number of other organs. These findings are consistent with the hypothesis that burn trauma to the extremities can produce marked systemic effects, including activation of NF-κB expression and activation of 18FDG uptake by BAT.
- Published
- 2014
- Full Text
- View/download PDF