1. Constructive Deep Neural Network for Breast Cancer Diagnosis
- Author
-
Farhat Fnaiech, Brigitte Chebel Morello, Laurent Arnould, Noureddine Zerhouni, Ryad Zemouri, Nabil Omri, Christine Devalland, CEDRIC. Traitement du signal et architectures électroniques (CEDRIC - LAETITIA), Centre d'études et de recherche en informatique et communications (CEDRIC), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), CH Belfort-Montbéliard, Service d'Ophtalmologie (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Ecole Nationale d'Ingénieurs de Tunis (ENIT), and Université de Tunis El Manar (UTM)
- Subjects
Computer science ,Recurrence score ,02 engineering and technology ,Machine learning ,computer.software_genre ,Constructive ,03 medical and health sciences ,0302 clinical medicine ,Breast cancer ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,Cancer centre ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,ComputingMilieux_MISCELLANEOUS ,Artificial neural network ,medicine.diagnostic_test ,business.industry ,medicine.disease ,3. Good health ,Data set ,Control and Systems Engineering ,Computer-aided diagnosis ,030220 oncology & carcinogenesis ,020201 artificial intelligence & image processing ,Artificial intelligence ,Oncotype DX ,business ,computer - Abstract
The Oncotype DX (ODX) breast cancer assay is the worldwide most common and used Gene Expression Profiling (GEP) test. This ODX assay has a great impact on Adjuvant ChemoTherapy (ACT) decision. However, many standard approaches have been proposed and suggested to practitioners. The accuracy of such methods never reached the highest level. This paper deals with the Breast Cancer Computer Aided Diagnosis (BC-CAD) based on a Deep Constructive Neural Network used for the Recurrence Score (RS) prediction of the ODX assay. The proposed ConstDeepNet algorithm was tested to build two classifiers. In the first architecture, a ”one against all” structure is used where one Deep Neural Network is built for each class. In the second architecture, one DNN is used for the three classes. The proposed BC-CAD algorithm is tested on a real data-set and exhibits good performance. The study data set contains 92 cases carcinoma mammary luminal B with available Oncotype DX test results from 2012 to 2017 taken from the Georges Francois Leclerc cancer centre and the North Trevenans County Hospital located respectively in Dijon and Belfort in France.
- Published
- 2018
- Full Text
- View/download PDF