1. Three-dimensional biventricular strains in pulmonary arterial hypertension patients using hyperelastic warping
- Author
-
John Carson Allen, Fei Gao, Martin Genet, Shuang Leng, Ju Le Tan, Xiaodan Zhao, Hua Zou, Ce Xi, Lik Chuan Lee, Ru San Tan, Angela S Koh, Liang Zhong, National Heart Centre Singapore (NHCS), Michigan State University [East Lansing], Michigan State University System, Duke-NUS Medical School [Singapore], Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
- Subjects
Adult ,Male ,medicine.medical_specialty ,Heart Ventricles ,Magnetic Resonance Imaging, Cine ,Health Informatics ,Models, Biological ,Article ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,Ventricular Dysfunction, Left ,0302 clinical medicine ,Imaging, Three-Dimensional ,[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system ,Internal medicine ,medicine ,Image Processing, Computer-Assisted ,Humans ,cardiovascular diseases ,Image warping ,Pulmonary Arterial Hypertension ,Ejection fraction ,Cardiac cycle ,Receiver operating characteristic ,business.industry ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Middle Aged ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,Computer Science Applications ,medicine.anatomical_structure ,Ventricle ,Hyperelastic material ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Cardiology ,cardiovascular system ,Female ,Objective evaluation ,business ,Cardiac magnetic resonance ,030217 neurology & neurosurgery ,Software ,circulatory and respiratory physiology - Abstract
International audience; Background and Objective: Evaluation of biventricular function is an essential component of clinical management in pulmonary arterial hypertension (PAH). This study aims to examine the utility of biventricular strains derived from a model-to-image registration technique in PAH patients in comparison to age-and gender-matched normal controls. Methods: A three-dimensional (3D) model was reconstructed from cine short-and long-axis cardiac magnetic resonance (CMR) images and subsequently partitioned into right ventricle (RV), left ventricle (LV) and septum. The hyperelastic warping method was used to register the meshed biventricular finite element model throughout the cardiac cycle and obtain the corresponding biventricular circumferential, longitudinal and radial strains. Results: Intra-and inter-observer reproducibility of biventricular strains was excellent with all intra-class correlation coefficients > 0.84. 3D biventricular longitudinal, circumferential and radial strains for RV, LV and septum were significantly decreased in PAH patients compared with controls. Receiver operating characteristic (ROC) analysis showed that the 3D biventricular strains were better early markers (Area under the ROC curve = 0.96 for RV longitudinal strain) of ventricular dysfunction than conventional parameters such as two-dimensional strains and ejection fraction. Conclusions: Our highly reproducible methodology holds potential for extending CMR imaging to characterize 3D biventricular strains, eventually leading to deeper understanding of biventricular mechanics in PAH.
- Published
- 2020
- Full Text
- View/download PDF