1. Abstract 17: Genetic Deletion Of Angiotensin Ii AT 1a Receptors Selectively In The Proximal Tubules Of The Kidney Attenuates Two-kidney, One-clip Goldblatt Hypertension In Pt- Agtr1a -/- Mice
- Author
-
Xiao C Li, Chih-Hong Wang, Jia L Zhuo, Rumana Hassan, Ana Paula Oliveira Leite, Courtney M Dugas, Ryosuke Sato, and Akemi Sato
- Subjects
medicine.medical_specialty ,Kidney ,Endocrinology ,Two kidney ,medicine.anatomical_structure ,business.industry ,Internal medicine ,Internal Medicine ,medicine ,Goldblatt hypertension ,business ,Receptor ,Angiotensin II - Abstract
The activation of the renin-angiotensin system (RAS) in the clipped kidney plays a critical role in the development of two-kidney, one-clip Goldblatt hypertension (2K1C), but the roles of angiotensin II (Ang II) and AT 1a receptors in the proximal tubules has not been determined previously. The present study tested the hypothesis that genetic deletion of AT 1a receptors selectively in the proximal tubules attenuates the development of 2K1C Goldblatt hypertension via AT 1a receptor-mediated, Na + /H + exchanger 3 (NHE3)-dependent mechanisms. To test the hypothesis, 2K1C Goldblatt hypertension was induced by placing a silver clip, 0.2 mm internal diameter, on the left renal artery for 4 weeks in adult male wild-type (WT), global AT 1a receptor knockout ( Agtr1a -/- ), proximal tubule (PT)-specific Agtr1a -/- (PT- Agtr1a -/- ), or PT- Nhe3 -/- mice, respectively. In WT mice, systolic blood pressure increased in a time-dependent manner reaching a maximal response by Week 3 (Basal: 112 ± 2 vs. 2K1C: 149 ± 4 mmHg, n=12, P P P P P Agtr1a -/- (Basal: 88 ± 4 vs. 2K1C: 92 ± 2 mmHg, n=9, n.s .), PT- Agtr1a -/- mice (Basal: 101 ± 2 vs. 2K1C: 104 ± 3 mmHg, n=12, n.s .) and PT- Nhe3 -/- mice (Basal: 103 ± 3 vs. 109 ± 5 mmHg, n=12, n.s .). Renin mRNA expression was not different in clipped and nonclipped kidney of Agtr1a -/- mice, but it was decreased in the nonclipped kidney of PT- Agtr1a -/- mice ( P 1a receptors selectively in the proximal tubules attenuates the development of 2K1C Goldblatt hypertension via AT 1a receptor-mediated, Na + /H + exchanger 3 (NHE3)-dependent mechanisms.
- Published
- 2021
- Full Text
- View/download PDF