1. Model-based estimation of the state of vehicle automation as derived from the driver’s spontaneous visual strategies
- Author
-
Franck Mars, Camilo Charron, Damien Schnebelen, Perception, Action, Cognition pour la Conception et l’Ergonomie (PACCE), Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE22-0007,AutoConduct,Adaptation de la stratégie d'automatisation des véhicules autonomes (niveaux 3-4) aux besoins et à l'état des conducteurs en conditions réelles(2016), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Nantes (ECN)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Nantes (ECN)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
Visual perception ,Computer science ,media_common.quotation_subject ,Control (management) ,[SHS.PSY]Humanities and Social Sciences/Psychology ,Corollary ,Human–computer interaction ,0502 economics and business ,Quality (business) ,050207 economics ,eye movement ,ComputingMilieux_MISCELLANEOUS ,media_common ,050208 finance ,business.industry ,QM1-695 ,05 social sciences ,gaze behaviour ,Eye movement ,Automation ,Gaze ,Sensory Systems ,Ophthalmology ,Human anatomy ,automated driving ,gaze dynamics ,manual driving ,State (computer science) ,region of interest ,business ,Research Article - Abstract
When manually steering a car, the driver’s visual perception of the driving scene and his or her motor actions to control the vehicle are closely linked. Since motor behaviour is no longer required in an automated vehicle, the sampling of the visual scene is affected. Autonomous driving typically results in less gaze being directed towards the road centre and a broader exploration of the driving scene, compared to manual driving. To examine the corollary of this situation, this study estimated the state of automation (manual or automated) on the basis of gaze behaviour. To do so, models based on partial least square regressions were computed by considering the gaze behaviour in multiple ways, using static indicators (percentage of time spent gazing at 13 areas of interests), dynamic indicators (transition matrices between areas) or both together. Analysis of the quality of predictions for the different models showed that the best result was obtained by considering both static and dynamic indicators. However, gaze dynamics played the most important role in distinguishing between manual and automated driving. This study may be relevant to the issue of driver monitoring in autonomous vehicles.
- Published
- 2021
- Full Text
- View/download PDF