1. Evolving phenotypes of non-hospitalized patients that indicate long COVID
- Author
-
ESTIRI, Hossein, Strasser, Zachary, Brat, Gabriel, Semenov, Yevgeniy, Patel, Chirag, Murphy, Shawn, Aaron, James, Agapito, Giuseppe, Albayrak, Adem, Alessiani, Mario, Amendola, Danilo, Anthony, Li, Aronow, Bruce, Ashraf, Fatima, Atz, Andrew, Avillach, Paul, Balshi, James, Beaulieu-Jones, Brett, Bell, Douglas, Bellasi, Antonio, Bellazzi, Riccardo, Benoit, Vincent, Beraghi, Michele, Sobrino, José Luis Bernal, Bernaux, Mélodie, Bey, Romain, Martínez, Alvar Blanco, Boeker, Martin, Bonzel, Clara-Lea, Booth, John, Bosari, Silvano, Bourgeois, Florence, Bradford, Robert, Bréant, Stéphane, Brown, Nicholas, Bryant, William, Bucalo, Mauro, Burgun, Anita, Cai, Tianxi, Cannataro, Mario, Carmona, Aldo, Caucheteux, Charlotte, Champ, Julien, Chen, Jin, Chen, Krista, Chiovato, Luca, Chiudinelli, Lorenzo, Cho, Kelly, Cimino, James, Colicchio, Tiago, Cormont, Sylvie, COSSIN, Sébastien, Craig, Jean, Bermúdez, Juan Luis Cruz, Rojo, Jaime Cruz, Dagliati, Arianna, Daniar, Mohamad, Daniel, Christel, Davoudi, Anahita, Devkota, Batsal, Dubiel, Julien, Esteve, Loic, Fan, Shirley, Follett, Robert, Gaiolla, Paula, Ganslandt, Thomas, Barrio, Noelia García, Garmire, Lana, Gehlenborg, Nils, GEVA, Alon, Gradinger, Tobias, Gramfort, Alexandre, Griffier, Romain, Griffon, Nicolas, Grisel, Olivier, Gutiérrez-Sacristán, Alba, Hanauer, David, Haverkamp, Christian, He, Bing, Henderson, Darren, Hilka, Martin, Holmes, John, Hong, Chuan, Horki, Petar, Huling, Kenneth, HUTCH, Meghan, Issitt, Richard, Jannot, Anne Sophie, Jouhet, Vianney, Keller, Mark, Kirchoff, Katie, Klann, Jeffrey, Kohane, Isaac, Krantz, Ian, Kraska, Detlef, Krishnamurthy, Ashok, L’Yi, Sehi, Le, Trang, Leblanc, Judith, Leite, Andressa, Lemaitre, Guillaume, Lenert, Leslie, Leprovost, Damien, Liu, Molei, LOH, Ne Hooi Will, Lozano-Zahonero, Sara, Luo, Yuan, Lynch, Kristine, Mahmood, Sadiqa, Maidlow, Sarah, Malovini, Alberto, Mandl, Kenneth, Mao, Chengsheng, Maram, Anupama, Martel, Patricia, Masino, Aaron, Mazzitelli, Maria, Mensch, Arthur, Milano, Marianna, Minicucci, Marcos, Moal, Bertrand, Moore, Jason, Moraleda, Cinta, Morris, Jeffrey, MORRIS, Michele, Moshal, Karyn, Mousavi, Sajad, Mowery, Danielle, Murad, Douglas, Naughton, Thomas, Neuraz, Antoine, Ngiam, Kee Yuan, Norman, James, Obeid, Jihad, Okoshi, Marina, Olson, Karen, Omenn, Gilbert, Orlova, Nina, Ostasiewski, Brian, Palmer, Nathan, Paris, Nicolas, Patel, Lav, Jimenez, Miguel Pedrera, Pfaff, Emily, Pillion, Danielle, Prokosch, Hans, Prudente, Robson, González, Víctor Quirós, Ramoni, Rachel, Raskin, Maryna, RIEG, Siegbert, Domínguez, Gustavo Roig, Rojo, Pablo, Sáez, Carlos, Salamanca, Elisa, Samayamuthu, Malarkodi, Sandrin, Arnaud, Santos, Janaina, Savino, Maria, SCHRIVER, Emily, Schubert, Petra, Schuettler, Juergen, Scudeller, Luigia, Sebire, Neil, Balazote, Pablo Serrano, Serre, Patricia, Serret-Larmande, Arnaud, Shakeri, Zahra, Silvio, Domenick, Sliz, Piotr, SON, Jiyeon, Sonday, Charles, South, Andrew, Spiridou, Anastasia, Tan, Amelia, Tan, Bryce, Tan, Byorn, Tanni, Suzana, Taylor, Deanne, Terriza Torres, Ana, Tibollo, Valentina, Tippmann, Patric, Torti, Carlo, Trecarichi, Enrico, Tseng, Yi-Ju, Vallejos, Andrew, Varoquaux, Gael, Vella, Margaret, Verdy, Guillaume, Vie, Jill-Jênn, Visweswaran, Shyam, Vitacca, Michele, Wagholikar, Kavishwar, Waitman, Lemuel, Wang, Xuan, Wassermann, Demian, Weber, Griffin, XIA, Zongqi, Yehya, Nadir, Yuan, William, Zambelli, Alberto, Zhang, Harrison, Zoeller, Daniel, Zucco, Chiara, Massachusetts General Hospital [Boston], Harvard Medical School [Boston] (HMS), Service d'informatique médicale et biostatistiques [CHU Necker], CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Health data- and model- driven Knowledge Acquisition (HeKA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Université de Paris - UFR Médecine Paris Centre [Santé] (UP Médecine Paris Centre), Université de Paris (UP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPC), Université Paris Cité - UFR Médecine Paris Centre [Santé] (UPC Médecine Paris Centre), Université Paris Cité (UPC), This work was supported by the National Human Genome Research Institute grant 3U01HG008685-05S2 and the National Library of Medicine grant T15LM007092., École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), UFR Médecine [Santé] - Université Paris Cité (UFR Médecine UPCité), and Université Paris Cité (UPCité)
- Subjects
medicine.medical_specialty ,Neurological disorder ,Chest pain ,MESH: Phenotype ,Article ,03 medical and health sciences ,0302 clinical medicine ,Post-Acute COVID-19 Syndrome ,Diabetes mellitus ,Internal medicine ,Machine learning ,medicine ,Chronic fatigue syndrome ,Humans ,Electronic health records ,Post-acute sequelae of SARS-CoV-2 ,MESH: COVID-19 ,030304 developmental biology ,Retrospective Studies ,0303 health sciences ,MESH: Humans ,business.industry ,Medical record ,Type 2 Diabetes Mellitus ,COVID-19 ,Retrospective cohort study ,MESH: Retrospective Studies ,General Medicine ,medicine.disease ,3. Good health ,Dysgeusia ,Phenotypes ,Phenotype ,Medicine ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,medicine.symptom ,business ,030217 neurology & neurosurgery ,Research Article ,Cohort study - Abstract
Background For some SARS-CoV-2 survivors, recovery from the acute phase of the infection has been grueling with lingering effects. Many of the symptoms characterized as the post-acute sequelae of COVID-19 (PASC) could have multiple causes or are similarly seen in non-COVID patients. Accurate identification of PASC phenotypes will be important to guide future research and help the healthcare system focus its efforts and resources on adequately controlled age- and gender-specific sequelae of a COVID-19 infection. Methods In this retrospective electronic health record (EHR) cohort study, we applied a computational framework for knowledge discovery from clinical data, MLHO, to identify phenotypes that positively associate with a past positive reverse transcription-polymerase chain reaction (RT-PCR) test for COVID-19. We evaluated the post-test phenotypes in two temporal windows at 3–6 and 6–9 months after the test and by age and gender. Data from longitudinal diagnosis records stored in EHRs from Mass General Brigham in the Boston Metropolitan Area was used for the analyses. Statistical analyses were performed on data from March 2020 to June 2021. Study participants included over 96 thousand patients who had tested positive or negative for COVID-19 and were not hospitalized. Results We identified 33 phenotypes among different age/gender cohorts or time windows that were positively associated with past SARS-CoV-2 infection. All identified phenotypes were newly recorded in patients’ medical records 2 months or longer after a COVID-19 RT-PCR test in non-hospitalized patients regardless of the test result. Among these phenotypes, a new diagnosis record for anosmia and dysgeusia (OR 2.60, 95% CI [1.94–3.46]), alopecia (OR 3.09, 95% CI [2.53–3.76]), chest pain (OR 1.27, 95% CI [1.09–1.48]), chronic fatigue syndrome (OR 2.60, 95% CI [1.22–2.10]), shortness of breath (OR 1.41, 95% CI [1.22–1.64]), pneumonia (OR 1.66, 95% CI [1.28–2.16]), and type 2 diabetes mellitus (OR 1.41, 95% CI [1.22–1.64]) is one of the most significant indicators of a past COVID-19 infection. Additionally, more new phenotypes were found with increased confidence among the cohorts who were younger than 65. Conclusions The findings of this study confirm many of the post-COVID-19 symptoms and suggest that a variety of new diagnoses, including new diabetes mellitus and neurological disorder diagnoses, are more common among those with a history of COVID-19 than those without the infection. Additionally, more than 63% of PASC phenotypes were observed in patients under 65 years of age, pointing out the importance of vaccination to minimize the risk of debilitating post-acute sequelae of COVID-19 among younger adults.
- Published
- 2021
- Full Text
- View/download PDF