4 results on '"Laura Oudjedi"'
Search Results
2. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging
- Author
-
Laurent Mazenq, Aline Cerf, Marcelo Nollmann, Pierre-François Calmon, Aurélie Lecestre, Jean-Bernard Fiche, Sara Abrahamsson, Laura Oudjedi, Centre de Biochimie Structurale [Montpellier] (CBS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM), Rockefeller University [New York], Service Techniques et Équipements Appliqués à la Microélectronique (LAAS-TEAM), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Équipe Ingénierie pour les sciences du vivant (LAAS-ELIA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), and Université de Toulouse (UT)
- Subjects
0301 basic medicine ,Diffraction ,[PHYS]Physics [physics] ,Materials science ,business.industry ,Grating ,Diffraction efficiency ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Article ,010309 optics ,03 medical and health sciences ,030104 developmental biology ,Optics ,Multifocal plane microscopy ,0103 physical sciences ,Microscopy ,Depth of field ,Adaptive optics ,business ,Diffraction grating ,Biotechnology - Abstract
International audience; We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm.
- Published
- 2016
- Full Text
- View/download PDF
3. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging
- Author
-
Joan Pulupa, Lei Chen, Sara Abrahamsson, Bassam Hajj, Liya Yu, Mohamed El Beheiry, Xavier Darzacq, Marcelo Davanco, Mustafa Mir, Laura Oudjedi, Jan Wisniewski, Jean-Bernard Fiche, Marcelo Nollmann, Cornelia I. Bargmann, J. Alexander Liddle, Carl Wu, Rob Ilic, Xin Jin, Christine E. Cho, Maxime Dahan, Timothée Lionnet, Brian Mehl, Rockefeller University [New York], National Institute of Standards and Technology [Gaithersburg] (NIST), Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Centre de Biochimie Structurale [Montpellier] (CBS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM), Physico-Chimie-Curie (PCC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), HAL UPMC, Gestionnaire, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Photon ,Materials science ,Image quality ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,(110.4190) Multiple imaging ,(180.2520) Fluorescence microscopy ,(260.5430) Polarization ,Bioengineering ,Optical Physics ,Grating ,01 natural sciences ,Three-dimensional microscopy ,Article ,010309 optics ,03 medical and health sciences ,Biological specimen ,Optics ,Affordable and Clean Energy ,Polarization ,0103 physical sciences ,Microscopy ,Diffractive optics ,Multiple imaging ,Fluorescence microscopy ,business.industry ,Ranging ,Materials Engineering ,(050.1970) Diffractive optics ,Frame rate ,Atomic and Molecular Physics, and Optics ,030104 developmental biology ,Nanolithography ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,(180.6900) Three-dimensional microscopy ,Generic health relevance ,business ,Biotechnology - Abstract
International audience; Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a " precise color " MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans.
- Published
- 2015
- Full Text
- View/download PDF
4. Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals
- Author
-
Brahim Lounis, Laurent Cognet, A. Nicholas G. Parra-Vasquez, Laura Oudjedi, Laboratoire Photonique, Numérique et Nanosciences (LP2N), Université Sciences et Technologies - Bordeaux 1-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS), lp2n-01,lp2n-12, and Université Sciences et Technologies - Bordeaux 1-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Phase transition ,Materials science ,single molecule detection ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Thermotropic crystal ,liquid crystals ,Liquid crystal ,0103 physical sciences ,Microscopy ,Water environment ,General Materials Science ,Physical and Theoretical Chemistry ,010306 general physics ,Condensed Matter - Materials Science ,business.industry ,thermotropic phase transition ,Materials Science (cond-mat.mtrl-sci) ,Photothermal therapy ,021001 nanoscience & nanotechnology ,Photothermal microscopy ,Colloidal gold ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,Optoelectronics ,nanoparticles ,sense organs ,0210 nano-technology ,business ,Refractive index ,Physics - Optics ,Optics (physics.optics) - Abstract
International audience; The photothermal heterodyne imaging technique enabled studies of individual weakly absorbing nano-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking advantage of the dramatic index of refraction change occurring around a thermotropic liquid crystalline phase transition, we demonstrate a 40-fold signal-to-noise ratio enhancement for gold nanoparticles imaged in 4-Cyano-4'-pentylbiphenyl (5CB) liquid crystals over those in a water environment. We studied the photothermal signal as a function of probe laser polarization, heating power, and sample temperature quantifying the optimal enhancement. This study established photothermal microscopy as a valuable technique for inducing and/or detecting local phase transitions at the nanometer scales.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.