1. Borsa Endeksi Hareketlerinin Tahmini: Trend Belirleyici Veri
- Author
-
Hakan Pabuçcu
- Subjects
bist 100 ,artificial neural network ,support vector machine ,naive bayes classifier ,machine learning ,bist100 ,yapay sinir ağları ,destek vektör makineleri ,naive bayes ,makine öğrenme ,Finance ,HG1-9999 ,Business ,HF5001-6182 - Abstract
Bu çalışma BIST 100 borsa endeksinin negatif ve pozitif yönlü hareketlerinin tahmin edilmesini konu edinmektedir. Yapay sinir ağı, destek vektör makinesi ve naive Bayes algoritmasının tahmin performansları karşılaştırılmaktadır. Analizler iki aşamalı olarak yapılmaktadır. Birinci aşamada tahmin modellerinde girdi olarak kullanılacak dokuz adet teknik gösterge, borsa endeksi açılış, kapanış, en yüksek ve en düşük fiyatlar, kullanılarak hesaplanmakta ve sürekli olan bu teknik göstergeler barındırdıkları trende göre kategorize edilerek yeni bir veri seti oluşturulmaktadır. İkinci aşamada ise, trend belirleyici veri seti girdi olarak kullanılmakta ve seçilen üç makine öğrenme algoritması kullanılarak tahminler yapılmaktadır. BIST 100 veri seti 2009-2018 Aralığını kapsayan günlük kapanış fiyatlarını içermektedir. Analizlerle, destek vektör makineleri algoritmasının en iyi sınıflandırıcı olduğu sonucuna ulaşılmıştır. Ayrıca, daha önceki benzer çalışmalarla karşılaştırmalar yapılarak gerek kullanılan veri seti gerekse tahmin modellerinin etkileri tartışılmaktadır.
- Published
- 2019
- Full Text
- View/download PDF