Carlos A. García-Prieto, Alvaro Urbano-Ispizua, Michal J. Besser, Orit Itzhaki, Concetta Quintarelli, Amilia Meir, Valentín Ortiz-Maldonado, Manuel Castro de Moura, Lorea Villanueva, Matilde Sinibaldi, Manel Juan, Gerardo Ferrer, Franco Locatelli, Europa Azucena González-Navarro, Francesca Del Bufalo, Elad Jacoby, Alberto Bueno-Costa, Veronica Davalos, Diana Bar, Marta Soler, Manel Esteller, Agustín F. Fernández, Mario F. Fraga, Abraham Avigdor, Julio Delgado, Rocío G. Urdinguio, Generalitat de Catalunya, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Fundació Privada Cellex, and Fundación
Background: Chimeric antigen receptor (CAR) T cells directed against CD19 (CART19) are effective in B-cell malignancies, but little is known about the molecular factors predicting clinical outcome of CART19 therapy. The increasingly recognized relevance of epigenetic changes in cancer immunology prompted us to determine the impact of the DNA methylation profiles of CART19 cells on the clinical course. Methods: We recruited 114 patients with B-cell malignancies, comprising 77 patients with acute lymphoblastic leukemia and 37 patients with non-Hodgkin lymphoma who were treated with CART19 cells. Using a comprehensive DNA methylation microarray, we determined the epigenomic changes that occur in the patient T cells upon transduction of the CAR vector. The effects of the identified DNA methylation sites on clinical response, cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, event-free survival, and overall survival were assessed. All statistical tests were 2-sided. Results: We identified 984 genomic sites with differential DNA methylation between CAR-untransduced and CAR-transduced T cells before infusion into the patient. Eighteen of these distinct epigenetic loci were associated with complete response (CR), adjusting by multiple testing. Using the sites linked to CR, an epigenetic signature, referred to hereafter as the EPICART signature, was established in the initial discovery cohort (n = 79), which was associated with CR (Fisher exact test, P < .001) and enhanced event-free survival (hazard ratio [HR] = 0.36; 95% confidence interval [CI] = 0.19 to 0.70; P = .002; log-rank P = .003) and overall survival (HR = 0.45; 95% CI = 0.20 to 0.99; P = .047; log-rank P = .04;). Most important, the EPICART profile maintained its clinical course predictive value in the validation cohort (n = 35), where it was associated with CR (Fisher exact test, P < .001) and enhanced overall survival (HR = 0.31; 95% CI = 0.11 to 0.84; P = .02; log-rank P = .02). Conclusions: We show that the DNA methylation landscape of patient CART19 cells influences the efficacy of the cellular immunotherapy treatment in patients with B-cell malignancy., Supported by CERCA Programme/Generalitat de Catalunya, Health Department PERIS #SLT/002/16/00374, AGAUR-project #2017SGR1080; MCI/AEI/ERDF project #RTI2018-094049-B-I00; ERC EPIPHARM; Cellex Foundation; “la Caixa” Foundation (LCF/PR/GN18/51140001 and LCF/PR/GN18/50310007), RF-2016–02364388, Accelerator Award—Cancer Research UK/AIRC—INCAR Associazione Italiana Ricerca per la Ricerca sul Cancro (AIRC) Project 5 × 1000 no. 9962, AIRC IG 2018 id. 21724, AIRC MFAG id. 21769 and id. 20450; MIUR (Grant PRIN 2017); and RCR-2019–23669115.