1. Hypotension Prediction Index with non-invasive continuous arterial pressure waveforms (ClearSight): clinical performance in Gynaecologic Oncologic Surgery
- Author
-
Francesco Vassalli, Bruno Antonio Zanfini, Giovanni Scambia, Stefano Catarci, Gaetano Draisci, Anna Fagotti, Luciano Frassanito, Pietro Paolo Giuri, Alessia Longo, and Alessandra Piersanti
- Subjects
medicine.medical_specialty ,Mean arterial pressure ,Hemodynamics ,Health Informatics ,Anesthesia, General ,Critical Care and Intensive Care Medicine ,Sensitivity and Specificity ,Oncologic surgery ,Hemodynamic monitoring ,Anesthesiology ,Internal medicine ,Volume clamp method ,Machine learning ,Medicine ,Humans ,Arterial Pressure ,Intraoperative hypotension ,Original Research ,Retrospective Studies ,Receiver operating characteristic ,business.industry ,Hypotension prediction ,Area under the curve ,Confidence interval ,Gynaecologic Oncologic Surgery ,Settore MED/40 - GINECOLOGIA E OSTETRICIA ,Anesthesiology and Pain Medicine ,Blood pressure ,Cardiology ,Female ,Hypotension ,business - Abstract
Intraoperative hypotension (IOH) is common during major surgery and is associated with a poor postoperative outcome. Hypotension Prediction Index (HPI) is an algorithm derived from machine learning that uses the arterial waveform to predict IOH. The aim of this study was to assess the diagnostic ability of HPI working with non-invasive ClearSight system in predicting impending hypotension in patients undergoing major gynaecologic oncologic surgery (GOS). In this retrospective analysis hemodynamic data were downloaded from an Edwards Lifesciences HemoSphere platform and analysed. Receiver operating characteristic curves were constructed to evaluate the performance of HPI working on the ClearSight pressure waveform in predicting hypotensive events, defined as mean arterial pressure 1 min. Sensitivity, specificity, positive predictive value and negative predictive value were computed at a cutpoint (the value which minimizes the difference between sensitivity and specificity). Thirty-one patients undergoing GOS were included in the analysis, 28 of which had complete data set. The HPI predicted hypotensive events with a sensitivity of 0.85 [95% confidence interval (CI) 0.73–0.94] and specificity of 0.85 (95% CI 0.74–0.95) 15 min before the event [area under the curve (AUC) 0.95 (95% CI 0.89–0.99)]; with a sensitivity of 0.82 (95% CI 0.71–0.92) and specificity of 0.83 (95% CI 0.71–0.93) 10 min before the event [AUC 0.9 (95% CI 0.83–0.97)]; and with a sensitivity of 0.86 (95% CI 0.78–0.93) and specificity 0.86 (95% CI 0.77–0.94) 5 min before the event [AUC 0.93 (95% CI 0.89–0.97)]. HPI provides accurate and continuous prediction of impending IOH before its occurrence in patients undergoing GOS in general anesthesia. Supplementary Information The online version contains supplementary material available at 10.1007/s10877-021-00763-4.
- Published
- 2021