1. Medial prefrontal cortex N-methyl-D-aspartate receptor/nitric oxide/cyclic guanosine monophosphate pathway modulates both tachycardic and bradycardic baroreflex responses
- Author
-
Fernando H. F. Alves, Alessandra G. Fedoce, Leonardo B. M. Resstel, and Nilson C. Ferreira-Junior
- Subjects
medicine.medical_specialty ,Cannabinoid receptor ,Chemistry ,musculoskeletal, neural, and ocular physiology ,Glutamate receptor ,Neurotransmission ,Baroreflex ,Endocannabinoid system ,Cellular and Molecular Neuroscience ,Glutamatergic ,chemistry.chemical_compound ,Endocrinology ,nervous system ,Internal medicine ,cardiovascular system ,medicine ,NMDA receptor ,Cyclic guanosine monophosphate ,circulatory and respiratory physiology - Abstract
Neural reflex mechanisms, such as the baroreflex, are involved in regulating cardiovascular system activity. Previous results showed that the ventral portion of the medial prefrontal cortex (vMPFC) is involved in modulation only of the cardiac baroreflex bradycardic component. Moreover, vMPFC N-methyl-D-aspartate (NMDA) receptors modulate the bradycardia baroreflex, but the baroreflex tachycardic component has not been investigated. Furthermore, glutamatergic neurotransmission into the vMPFC is involved in activation of the cardiac sympathetic and parasympathetic nervous system. Finally, it has been demonstrated that glutamatergic neurotransmission into the vMPFC can be modulated by the endocannabinoid system and that activation of the CB1 cannabinoid receptor by anandamide, an endocannabinoid, can decrease both cardiac baroreflex bradycardic and tachycardic responses. Thus, there is the possibility that glutamatergic neurotransmission into the vMPFC does not modulate only the cardiac bradycardic component of the baroreflex. Therefore, the present study investigated whether glutamatergic neurotransmission into the vMPFC modulates both cardiac baroreflex bradycardic and tachycardic responses. We found that vMPFC bilateral microinjection of the NMDA receptor antagonist AP7 (4 nmol/200 nl), of a selective inhibitor of neuronal nitric oxide (NO) synthase N-propyl (0.08 nmol/200 nl), of the NO scavenger carboxy-PTIO (2 nmol/200 nl), or of the NO-sensitive guanylate cyclase ODQ (2 nmol/200 nl) decreased the baroreflex activity in unanesthetized rats. Therefore, our results demonstrate the participation of NMDA receptors, production of NO, and activation of guanylate cyclase in the vMPFC in the modulation of both cardiac baroreflex bradycardic and tachycardic responses. © 2013 Wiley Periodicals, Inc.
- Published
- 2013
- Full Text
- View/download PDF