1. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material.
- Author
-
Meng, Yujie, Young, Timothy, Liu, Peizhi, Contescu, Cristian, Huang, Biao, and Wang, Siqun
- Subjects
CELLULOSE chemistry ,CARBON ,AEROGELS ,ABSORPTION ,NANOSTRUCTURED materials ,HYDROPHOBIC surfaces - Abstract
The synthesis of a sponge-like carbon aerogel from microfibril cellulose, with high porosity (99 %), ultra-low density (0.01 g/cm), hydrophobic properties (149° static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 °C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m/g) was significantly higher than of Sample C-950 (145 m/g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF