1. Southern Ocean iron enrichment experiment: carbon cycling in high- and low-Si waters.
- Author
-
Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT, Brzezinski MA, Cochlan WP, Millero FJ, Falkowski PG, Bauer JE, Wanninkhof RH, Kudela RM, Altabet MA, Hales BE, Takahashi T, Landry MR, Bidigare RR, Wang X, Chase Z, Strutton PG, Friederich GE, Gorbunov MY, Lance VP, Hilting AK, Hiscock MR, Demarest M, Hiscock WT, Sullivan KF, Tanner SJ, Gordon RM, Hunter CN, Elrod VA, Fitzwater SE, Jones JL, Tozzi S, Koblizek M, Roberts AE, Herndon J, Brewster J, Ladizinsky N, Smith G, Cooper D, Timothy D, Brown SL, Selph KE, Sheridan CC, Twining BS, and Johnson ZI
- Subjects
- Atmosphere, Biomass, Carbon analysis, Carbon Dioxide analysis, Carbon Dioxide metabolism, Chlorophyll analysis, Chlorophyll A, Diatoms growth & development, Diatoms metabolism, Ecosystem, Nitrates analysis, Nitrates metabolism, Nitrogen analysis, Nitrogen metabolism, Oceans and Seas, Photosynthesis, Phytoplankton metabolism, Seawater chemistry, Carbon metabolism, Iron analysis, Iron metabolism, Phytoplankton growth & development, Silicic Acid analysis, Silicic Acid metabolism
- Abstract
The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.
- Published
- 2004
- Full Text
- View/download PDF