1. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment.
- Author
-
Kunde VG, Flasar FM, Jennings DE, Bézard B, Strobel DF, Conrath BJ, Nixon CA, Bjoraker GL, Romani PN, Achterberg RK, Simon-Miller AA, Irwin P, Brasunas JC, Pearl JC, Smith MD, Orton GS, Gierasch PJ, Spilker LJ, Carlson RC, Mamoutkine AA, Calcutt SB, Read PL, Taylor FW, Fouchet T, Parrish P, Barucci A, Courtin R, Coustenis A, Gautier D, Lellouch E, Marten A, Prangé R, Biraud Y, Ferrari C, Owen TC, Abbas MM, Samuelson RE, Raulin F, Ade P, Césarsky CJ, Grossman KU, and Coradini A
- Subjects
- Acetylene, Atmosphere, Ethane, Extraterrestrial Environment, Spacecraft, Spectrum Analysis, Temperature, Carbon Dioxide, Hydrocarbons, Hydrogen Cyanide, Jupiter
- Abstract
The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.
- Published
- 2004
- Full Text
- View/download PDF