1. Fast Mg2+ diffusion in Mo3(PO4)3O for Mg batteries.
- Author
-
Rong, Ziqin, Xiao, Penghao, Liu, Miao, Huang, Wenxuan, Hannah, Daniel C., Scullin, William, Persson, Kristin A., and Ceder, Gerbrand
- Subjects
MAGNESIUM compounds ,CATHODES ,DENSITY functional theory ,MOLECULAR dynamics - Abstract
In this work, we identify a new potential Mg battery cathode structure Mo
3 (PO4 )3 O, which is predicted to exhibit ultra-fast Mg2+ diffusion and relatively high voltage based on first-principles density functional theory calculations. Nudged elastic band calculations reveal that the migration barrier of the percolation channel is only ∼80 meV, which is remarkably low, and comparable to the best Li-ion conductors. This low barrier is verified by ab initio molecular dynamics and kinetic Monte Carlo simulations. The voltage and specific energy are predicted to be ∼1.98 V and ∼173 W h kg−1 , respectively. If confirmed by experiments, this material would have the highest known Mg mobility among inorganic compounds. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF