1. Assessment of the nature of interactions of cations with cycloheptatriene derivatives using change in the aromaticity: Comparison with electron density and NBO results.
- Author
-
Valadbeigi, Younes and Gal, Jean-François
- Subjects
- *
ELECTRON density , *AROMATICITY , *ALKALI metal ions , *HARMONIC oscillators , *CATIONS - Abstract
Interactions of cycloheptatriene derivatives, C7H6X, (X = NH, PH, AsH, O, S, Se) with the cations H+, CH3+, Cu+, Al+, Li+, Na+, and K+ are studied using B3LYP functional and 6-311++G(d,p) basis set. The calculated gas-phase cation affinities (CA) and cation basicities (CB) for all molecules decrease as H+ > CH3+ > Cu+ > Al+ > Li+ > Na+ > K+. We used the induced aromaticity in the 7-membered ring of C7H6X upon interaction with the cations, M+, as a measure of C7H6X/M+ interaction. Nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) were used as two indices of aromaticity. The highest and lowest induced aromaticities were observed for interactions of H+ and K+, respectively. Also, the aromaticity induced by interaction with a cation in C7H6AsH and C7H6PH was larger than that in C7H6NH and C7H6O. Hence, the aromaticity was considered as a measure of covalency for the C7H6X/M+ interactions showing a rational dependence on both the molecule and cation. The nature of the interactions was also assessed using electron density, charge distribution analysis and NBO calculations. The results of the aromaticity indices, NICS and HOMA, were compared with the electron density and NBO results. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF