1. Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota
- Author
-
Cale O. Seymour, Marike Palmer, Eric D. Becraft, Ramunas Stepanauskas, Ariel D. Friel, Frederik Schulz, Tanja Woyke, Emiley Eloe-Fadrosh, Dengxun Lai, Jian-Yu Jiao, Zheng-Shuang Hua, Lan Liu, Zheng-Han Lian, Wen-Jun Li, Maria Chuvochina, Brianna K. Finley, Benjamin J. Koch, Egbert Schwartz, Paul Dijkstra, Duane P. Moser, Bruce A. Hungate, and Brian P. Hedlund
- Subjects
Microbiology (medical) ,Bacteria ,Medical Microbiology ,Microbiota ,Immunology ,Genetics ,Humans ,Calcifying Nanoparticles ,Cell Biology ,Applied Microbiology and Biotechnology ,Microbiology - Abstract
Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.
- Published
- 2023