1. Nucleolar RNA polymerase II drives ribosome biogenesis
- Author
-
Karan J. Abraham, Miling Wang, Jack Greenblatt, Lauren A. Ostrowski, Aparna Gorthi, Parasvi S. Patel, Daniel D. De Carvalho, Razq Hakem, Michael Ohh, Roxanne Oshidari, Alexander J.R. Bishop, Violena Pietrobon, Anas Samman, Arash Algouneh, Dorothy Yanling Zhao, Stephen Lee, Michael Bokros, Janet N.Y. Chan, V Talya Yerlici, Rajat Singhania, Brendan C. Dickson, Yupeng Liu, Elva Vidya, Negin Khosraviani, and Karim Mekhail
- Subjects
RNA, Untranslated ,Nucleolus ,Ribonuclease H ,Ribosome biogenesis ,Sarcoma, Ewing ,DNA, Ribosomal ,Ribosome ,Article ,RNA polymerase III ,03 medical and health sciences ,0302 clinical medicine ,RNA Polymerase I ,CRISPR-Associated Protein 9 ,Cell Line, Tumor ,RNA polymerase I ,Humans ,Polymerase ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,biology ,Chemistry ,DNA Helicases ,RNA ,Ribosomal RNA ,Multifunctional Enzymes ,Cell biology ,Protein Biosynthesis ,biology.protein ,DNA, Intergenic ,RNA Polymerase II ,R-Loop Structures ,Ribosomes ,Cell Nucleolus ,RNA Helicases ,030217 neurology & neurosurgery - Abstract
Proteins are manufactured by ribosomes—macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as ‘red laser’). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease. RNA polymerase II has an unexpected function in the nucleolus, helping to drive the expression of ribosomal RNA and to protect nucleolar structure through a mechanism involving triplex R-loop structures.
- Published
- 2020
- Full Text
- View/download PDF