1. Binding of insulin-like growth factors to Tera-2 human embryonal carcinoma cells during differentiation.
- Author
-
Fleck JF, Sledge GW Jr, Benenati SV, Frolik CA, Roth BJ, and Hirsch KS
- Subjects
- Binding Sites, Binding, Competitive, Cell Division drug effects, Cell Line, DNA Replication drug effects, Eflornithine pharmacology, Humans, Insulin-Like Growth Factor I pharmacology, Insulin-Like Growth Factor II pharmacology, Kinetics, Lewis X Antigen analysis, Recombinant Proteins metabolism, Recombinant Proteins pharmacology, Teratoma, Thymidine metabolism, Cell Differentiation drug effects, Insulin-Like Growth Factor I metabolism, Insulin-Like Growth Factor II metabolism
- Abstract
Differentiation of Tera-2 human embryonal carcinoma cells by exposure to 2.1 mM alpha-difluoromethylornithine resulted in changes in morphology, a decrease in growth rate, and changes in the expression of SSEA-1 differentiation antigen. While the binding of 125I-insulin-like growth factor I (IGF-I) remained relatively constant during differentiation, binding of 125I-IGF-II increased 2-3-fold. Further, the binding of IGF-II was 87 times greater than IGF-I in both undifferentiated and differentiated cells. Undifferentiated Tera-2 cells exhibited a single class of binding sites for both IGF-I (KD = 1.2 nM, 7.0 x 10(3) sites/cell) and IGF-II (KD = 8.3 nM, 3.4 x 10(5) sites/cell). Following differentiation, IGF-I continued to bind to a single class of binding sites (KD 1.0 nM, 6.7 x 10(3) sites/cell) whereas IGF-II bound to both high-affinity sites (KDH 0.3 nM, 2.2 x 10(5) sites/cell) and low-affinity sites (KDL 15.1 nM, 1.6 x 10(7) sites/cell). The binding of iodinated IGF-II was blocked by unlabeled IGF-II but not IGF-I. In contrast, 125I-IGF-I binding was prevented by either IGF-I or IGF-II. Affinity cross-linking experiments demonstrated the presence of both type I and type II IGF receptors along with a number of IGF binding proteins. IGF-I failed to stimulate the incorporation of [3H]thymidine in both undifferentiated and differentiated cells. Although IGF-II caused a significant increase in [3H]thymidine incorporation in both undifferentiated and differentiated Tera-2 cells, the magnitude of the response and the sensitivity of the cells to IGF-II stimulation was diminished following differentiation. The observed changes in IGF-II binding, which occur in conjunction with cellular differentiation, may be an important feature of the expression of the differentiated phenotype by human germ cell tumors.
- Published
- 1991