1. Structures of SAS-6 coiled coil hold implications for the polarity of the centriolar cartwheel.
- Author
-
Kantsadi AL, Hatzopoulos GN, Gönczy P, and Vakonakis I
- Subjects
- Animals, Cryoelectron Microscopy, Organelles metabolism, Spindle Apparatus metabolism, Cell Cycle Proteins metabolism, Centrioles chemistry, Centrioles metabolism
- Abstract
Centrioles are eukaryotic organelles that template the formation of cilia and flagella, as well as organize the microtubule network and the mitotic spindle in animal cells. Centrioles have proximal-distal polarity and a 9-fold radial symmetry imparted by a likewise symmetrical central scaffold, the cartwheel. The spindle assembly abnormal protein 6 (SAS-6) self-assembles into 9-fold radially symmetric ring-shaped oligomers that stack via an unknown mechanism to form the cartwheel. Here, we uncover a homo-oligomerization interaction mediated by the coiled-coil domain of SAS-6. Crystallographic structures of Chlamydomonas reinhardtii SAS-6 coiled-coil complexes suggest this interaction is asymmetric, thereby imparting polarity to the cartwheel. Using a cryoelectron microscopy (cryo-EM) reconstitution assay, we demonstrate that amino acid substitutions disrupting this asymmetric association also impair SAS-6 ring stacking. Our work raises the possibility that the asymmetric interaction inherent to SAS-6 coiled-coil provides a polar element for cartwheel assembly, which may assist the establishment of the centriolar proximal-distal axis., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF