Alexandrov, Yuri, Svarnik, Olga, Znamenskaya, Irina, Kolbeneva, Marina, Arutyunova, Karina, Krylov, Andrey, Bulava, Alexandra, and Feldman, Brian
As shown in our previous paper ('Regression I. Experimental approaches to regression', JAP, 65, 2, 345-65), the common mechanism of regression can be described as reversible dedifferentiation, which is understood as a relative increase of the proportion of low-differentiated (older) systems in actualized experience. Experimental data show that regression following disease (chronic tension headache) is followed by adaptation and an increase in system differentiation in that experience domain which contains systems responsible for that adaptation. The results of mathematical modelling support the idea that reversible dedifferentiation can be one of the mechanisms for increasing the effectiveness of adaptation through learning. Reversible dedifferentiation, which is phenomenologically described as regression, is a general mechanism for restructuring the organism-environment interactions in situations where behaviours that were effective in the past become ineffective. Reversible dedifferentiation has evolved as a component of adaptation when new behaviours are formed and large-scale modifications in the existing behaviours are required in the face of changes in the external and/or internal environment. Thus, the authors believe that this article provides evidence for Jung's view that regression is not only a 'return' to past forms of thinking, affects and behaviour, but that regressive processes provide a significant impetus for psychological growth and development. [ABSTRACT FROM AUTHOR]