1. VO2-Based Spacecraft Smart Radiator with High Emissivity Tunability and Protective Layer
- Author
-
Qingjie Xu, Haining Ji, Yang Ren, Yangyong Ou, Bin Liu, Yi Wang, Yongxing Chen, Peng Long, Cong Deng, and Jingting Wang
- Subjects
VO2 ,smart radiator device ,Fabry–Perot resonance ,emissivity tunability ,protective layer ,Chemistry ,QD1-999 - Abstract
In the extreme space environment, spacecraft endure dramatic temperature variations that can impair their functionality. A VO2-based smart radiator device (SRD) offers an effective solution by adaptively adjusting its radiative properties. However, current research on VO2-based thermochromic films mainly focuses on optimizing the emissivity tunability (Δε) of single-cycle sandwich structures. Although multi-cycle structures have shown increased Δε compared to single-cycle sandwich structures, there have been few systematic studies to find the optimal cycle structure. This paper theoretically discusses the influence of material properties and cyclic structure on SRD performance using Finite-Difference Time-Domain (FDTD) software, which is a rigorous and powerful tool for modeling nano-scale optical devices. An optimal structural model with maximum emissivity tunability is proposed. The BaF2 obtained through optimization is used as the dielectric material to further optimize the cyclic resonator. The results indicate that the tunability of emissivity can reach as high as 0.7917 when the BaF2/VO2 structure is arranged in three periods. Furthermore, to ensure a longer lifespan for SRD under harsh space conditions, the effects of HfO2 and TiO2 protective layers on the optical performance of composite films are investigated. The results show that when TiO2 is used as the protective layer with a thickness of 0.1 µm, the maximum emissivity tunability reaches 0.7932. Finally, electric field analysis is conducted to prove that the physical mechanism of the smart radiator device is the combination of stacked Fabry–Perot resonance and multiple solar reflections. This work not only validates the effectiveness of the proposed structure in enhancing spacecraft thermal control performance but also provides theoretical guidance for the design and optimization of SRDs for space applications.
- Published
- 2024
- Full Text
- View/download PDF