1. Sevoflurane modulation of tetrodotoxin-resistant Na+ channels in small-sized dorsal root ganglion neurons of rats
- Author
-
Michiko Nakamura, Jin-Hwa Cho, Gimin Kim, Soon-Hyeun Nam, and Il-Sung Jang
- Subjects
Patch-Clamp Techniques ,Analgesic ,Tetrodotoxin ,Voltage-Gated Sodium Channels ,Pharmacology ,Sodium Channels ,Sevoflurane ,Membrane Potentials ,Dorsal root ganglion ,Ganglia, Spinal ,medicine ,Animals ,Nociceptive Neurons ,Voltage dependence ,Tetrodotoxin resistant ,Neurons ,Chemistry ,General Neuroscience ,Volatile anesthetic ,Nociceptors ,Inflammatory pain ,Rats ,medicine.anatomical_structure ,Anesthetics, Inhalation ,medicine.drug - Abstract
Objective Volatile anesthetics are widely used for general anesthesia during surgical operations. Voltage-gated Na+ channels expressed in central neurons are major targets for volatile anesthetics; but it is unclear whether these drugs modulate native tetrodotoxin-resistant (TTX-R) Na+ channels, which are involved in the development and maintenance of inflammatory pain. Methods In this study, we examined the effects of sevoflurane on TTX-R Na+ currents (INa) in acutely isolated rat dorsal root ganglion neurons, using a whole-cell patch-clamp technique. Results Sevoflurane slightly potentiated the peak amplitude of transient TTX-R INa but more potently inhibited slow voltage-ramp-induced persistent INa in a concentration-dependent manner. Sevoflurane (0.86 ± 0.02 mM) (1) slightly shifted the steady-state fast inactivation relationship to hyperpolarizing ranges without affecting the voltage-activation relationship, (2) reduced the extent of use-dependent inhibition of Na+ channels, (3) accelerated the onset of inactivation and (4) delayed the recovery from inactivation of TTX-R Na+ channels. Thus, sevoflurane has diverse effects on TTX-R Na+ channels expressed in nociceptive neurons. Conclusions The present results suggest that the inhibition of persistent INa and the modulation of the voltage dependence and inactivation might be, at least in part, responsible for the analgesic effects elicited by sevoflurane.
- Published
- 2021
- Full Text
- View/download PDF