1. Cd0.5Zn0.5S/CoWO4 Nanohybrids with a Twinning Homojunction and an Interfacial S-Scheme Heterojunction for Efficient Visible-Light-Induced Photocatalytic CO2 Reduction
- Author
-
Wenxin Dai, Xin Chen, Changlin Yu, Ping Mu, Man Zhou, Kai Yang, Weiya Huang, Yu Zhenzhen, and Kangqiang Lu
- Subjects
business.industry ,Chemistry ,Heterojunction ,Inorganic Chemistry ,Semiconductor ,Phase (matter) ,Photocatalysis ,Optoelectronics ,Physical and Theoretical Chemistry ,Homojunction ,Crystal twinning ,business ,Wurtzite crystal structure ,Visible spectrum - Abstract
The construction of a phase junction photocatalyst can significantly enhance the photocatalytic performance with high selectivity for CO2 reduction. In this study, an S-scheme junction Cd0.5Zn0.5S/CoWO4 semiconductor with the coupling of a twin crystal Cd0.5Zn0.5S homojunction and CoWO4 was designed through a hydrothermal method, which could convert CO2 to CO with high efficiency under visible-light illumination. Cd0.5Zn0.5S-10%CoWO4 exhibited the optimal performance and its CO yield and selectivity were up to 318.68 μmol·g-1 and 95.90%, respectively, which were 4.54 and 1.62 times higher than that of twin crystal Cd0.5Zn0.5S. Moreover, the Cd0.5Zn0.5S homojunction with a zinc-blende and wurtzite phase and the S-scheme phase junction of Cd0.5Zn0.5S/CoWO4 enhanced the property of CO2 adsorption and accelerated the detachment of photogenerated carriers. The combination of photogenerated holes in Cd0.5Zn0.5S and the electrons of CoWO4 can retain the reduction sites to improve photocatalytic performance. This study provides a neoteric concept and reference for the construction of the S-scheme phase junction.
- Published
- 2021
- Full Text
- View/download PDF