1. SnS thin films realized from colloidal nanocrystal inks
- Author
-
Adam Pron, Peter Reiss, Jérôme Faure-Vincent, Antoine de Kergommeaux, Rémi de Bettignies, Laboratoire d'Electronique Moléculaire Organique et Hybride (LEMOH), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Spin coating ,Materials science ,Metals and Alloys ,Trioctylphosphine ,Nanotechnology ,Heterojunction ,Surfaces and Interfaces ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Surface coating ,chemistry ,Chemical engineering ,Nanocrystal ,Oleylamine ,Materials Chemistry ,[CHIM]Chemical Sciences ,Direct and indirect band gaps ,Thin film - Abstract
Tin sulfide (SnS), having a direct band gap of 1.3 eV, is a promising absorber material for solar energy conversion. We synthesized colloidal SnS nanocrystals with a size tuneable from 5 to 20 nm and low size dispersion. These nanocrystals can be processed as thin films using low-cost solution phase methods. They also offer the possibility of controlling the crystalline phase before deposition. With the goal to obtain dense and crack-free films of high conductivity, we used a layer-by-layer deposition technique. In the first step, the substrate was dipped in the nanocrystal colloidal solution (“ink”). Next, exchange of the nanocrystal surface ligands (oleylamine, trioctylphosphine, oleic acid) was carried out by dipping the substrate into a solution of small cross-linking molecules (1,4-benzenedithiol). This exchange enhances the electronic coupling and charge carrier mobilities by reducing the interparticle distance. At the same time it assures the immobilization of the nanocrystals to avoid their removal during subsequent depositions. The thickness of the nanocrystal thin films was controlled in a range of 100–250 nm by varying the number of the alternating nanocrystal deposition and ligand exchange steps. Scanning electron microscopy and atomic force microscopy investigations show that the obtained films are dense and homogeneous with a surface roughness as low as 3 to 4 nm root mean square. Using an inverted structure, the heterojunction of a SnS nanocrystals film with n-type ZnO nanocrystals shows a strongly increased current density under white light irradiation with respect to the dark.
- Published
- 2013
- Full Text
- View/download PDF