1. Comportement de phases stationnaires
- Author
-
Robert Luft, D. Lafaye de Micheaux, Roland Fellous, and Louisette Lizzani-Cuvelier
- Subjects
Chromatography ,Series (mathematics) ,Chemistry ,Organic Chemistry ,General Medicine ,Function (mathematics) ,Biochemistry ,Analytical Chemistry ,Linear relationship ,Stationary phase ,Benzene derivatives ,Cluster (physics) ,Polar ,Constant (mathematics) - Abstract
Behaviour of stationary phases. I. Linear relationships between retention data of benzene derivatives Retention times of about 140 benzenic mono- and polysubstituted compounds have been determined on a collection of stationary phases under isothermic conditions. The “numerical taxonomic aggregation” methods applied to these data lead to a classification of the stationary phases, in accordance with a measure of association between pairs of variables and an amalgamation rule for clustering. Three classes of phases (polar, non-polar and polyfluorinated) appear on the dendogram. Using the retention data relative to two phases, ϕ 1 and ϕ 2 , we show that a linear relationship between the two series of data is obtained whenever the two phases belong to the same cluster. This relationship (where coefficients a and b are constant in relation to Z, but vary with φ, ϕ 1 , ϕ 2 and T ) constitutes a general model, applicable to all benzenic compounds (mono-, di- or trisubstituted) under examination. The diversity of experimental conditions in the determination of retention data led us to a general updating of the various ways of expressing the retention, by simultaneously studying the effects of the temperature T and/or those of the nature of the stationary phase ϕ. We obtain a linear relationship in which Gr 1 and Gr 2 are either retention indexes, retention volumes or retention times, and Sq represents any carbon skeleton bearing the function Z. Such a relationship permits the comparison of interlaboratories results. Thus, although the characteristics of the columns and the experimental conditions vary, we obtain very satisfactory linear relationships between our own data expressed as log (reduced time) and those from the literature expressed either as indices or as log (retention volume) for stationary phases belonging to the same taxonomic class.
- Published
- 1981
- Full Text
- View/download PDF