Nicholas J. Tobias, Hui Hong, Torsten Seemann, Paul Dr Johnson, Jessica L. Porter, Sacha J. Pidot, Joseph Azuolas, Laurent Marsollier, John R. Wallace, Timothy P. Stinear, Grant A. Jenkin, Estelle Marion, Franck Letournel, Tasnim Saifudin Zakir, Benjamin P Howden, John K. Davies, Goethe-Universität Frankfurt am Main, Monash University [Clayton], The Peter Doherty Institute for Infection and Immunity [Melbourne], University of Melbourne-The Royal Melbourne Hospital, Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP), Université d'Angers (UA), Micro et Nanomédecines Translationnelles (MINT), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), New South Wales Department of Primary Industries (NSW DPI), Departments of Physiology & Pharmacology, and Medicine [Calgary, Canada] (School of Medicine), University of Calgary, Cambridge Systems Biology Centre & Department of Biochemistry (CSBC), University of Cambridge [UK] (CAM), Austin Health, Nuffield Department of Surgery, University of Oxford [Oxford], Department of Infectious Diseases [Monash Health, Clayton], Monash Medical Centre [Clayton, Australia], Univ Angers, Okina, and University of Oxford
Mycolactone A/B is a lipophilic macrocyclic polyketide that is the primary virulence factor produced by Mycobacterium ulcerans, a human pathogen and the causative agent of Buruli ulcer. In M. ulcerans strain Agy99 the mycolactone polyketide synthase (PKS) locus spans a 120 kb region of a 174 kb megaplasmid. Here we have identified promoter regions of this PKS locus using GFP reporter assays, in silico analysis, primer extension, and site-directed mutagenesis. Transcription of the large PKS genes mlsA1 (51 kb), mlsA2 (7 kb) and mlsB (42 kb) is driven by a novel and powerful SigA-like promoter sequence situated 533 bp upstream of both the mlsA1 and mlsB initiation codons, which is also functional in Escherichia coli, Mycobacterium smegmatis and Mycobacterium marinum. Promoter regions were also identified upstream of the putative mycolactone accessory genes mup045 and mup053. We transformed M. ulcerans with a GFP-reporter plasmid under the control of the mls promoter to produce a highly green-fluorescent bacterium. The strain remained virulent, producing both GFP and mycolactone and causing ulcerative disease in mice. Mosquitoes have been proposed as a potential vector of M. ulcerans so we utilized M. ulcerans-GFP in microcosm feeding experiments with captured mosquito larvae. M. ulcerans-GFP accumulated within the mouth and midgut of the insect over four instars, whereas the closely related, non-mycolactone-producing species M. marinum harbouring the same GFP reporter system did not. This is the first report to identify M. ulcerans toxin gene promoters, and we have used our findings to develop M. ulcerans-GFP, a strain in which fluorescence and toxin gene expression are linked, thus providing a tool for studying Buruli ulcer pathogenesis and potential transmission to humans., Author Summary Buruli ulcer (BU) is a serious skin infection of humans predominantly occurring in West and Central Africa. The disease is caused by infection with Mycobacterium ulcerans, a bacterium that produces an unusual toxin called mycolactone. There are many unanswered questions surrounding BU, particularly regarding the role of mycolactone in disease and how M. ulcerans is transmitted to humans. Here, we have partly addressed these questions by identifying genetic factors controlling the transcription of the mycolactone genes. Using a variety of experimental approaches, including green fluorescent protein (GFP) as a reporter of gene expression, we have identified strong promoters that drive transcription of the mycolactone genes in M. ulcerans. We then used our GFP reporters to produce highly fluorescent M. ulcerans-GFP that were readily visualized by microscopy. Mosquitoes have been proposed as a potential vector of M. ulcerans so we used M. ulcerans-GFP in feeding experiments with mosquito larvae. M. ulcerans-GFP accumulated within the insects, whereas other mycobacteria did not. This is the first report of the mycolactone gene promoters, and we have used our findings to develop M. ulcerans-GFP, a strain in which fluorescence and toxin gene expression are linked, thus providing a powerful tool for studying Buruli ulcer.