1. G-protein activation by a metabotropic glutamate receptor
- Author
-
Georgios Skiniotis, Marine de Lapeyrière, Jean-Philippe Rocher, Alpay B. Seven, Brian K. Kobilka, Justin G. Meyerowitz, Makaía M. Papasergi-Scott, Yang Gao, Ximena Barros-Álvarez, Jesper Mosolff Mathiesen, Robert M Nwokonko, Dominik Schelshorn, Michael J. Robertson, and Chensong Zhang
- Subjects
Models, Molecular ,0303 health sciences ,Multidisciplinary ,G protein ,Chemistry ,Cell Membrane ,Protomer ,GTP-Binding Protein alpha Subunits, Gi-Go ,Receptors, Metabotropic Glutamate ,Heterotrimeric GTP-Binding Proteins ,Transmembrane protein ,Article ,03 medical and health sciences ,Transmembrane domain ,0302 clinical medicine ,Metabotropic glutamate receptor ,Heterotrimeric G protein ,Biophysics ,Humans ,Metabotropic glutamate receptor 2 ,Protein Multimerization ,030217 neurology & neurosurgery ,030304 developmental biology ,G protein-coupled receptor - Abstract
Family C G-protein-coupled receptors (GPCRs) operate as obligate dimers with extracellular domains that recognize small ligands, leading to G-protein activation on the transmembrane (TM) domains of these receptors by an unknown mechanism1. Here we show structures of homodimers of the family C metabotropic glutamate receptor 2 (mGlu2) in distinct functional states and in complex with heterotrimeric Gi. Upon activation of the extracellular domain, the two transmembrane domains undergo extensive rearrangement in relative orientation to establish an asymmetric TM6–TM6 interface that promotes conformational changes in the cytoplasmic domain of one protomer. Nucleotide-bound Gi can be observed pre-coupled to inactive mGlu2, but its transition to the nucleotide-free form seems to depend on establishing the active-state TM6–TM6 interface. In contrast to family A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6 but is facilitated through the coordination of intracellular loops 2 and 3, as well as a critical contribution from the C terminus of the receptor. The findings highlight the synergy of global and local conformational transitions to facilitate a new mode of G-protein activation.
- Published
- 2021
- Full Text
- View/download PDF