Dae Won Moon, Chang-bong Oh, H. T. Jung, Kyung-hwan Cho, Jung Hyoung Lee, Young-Wug Kim, Jong-Ho Lee, Jong Pyo Kim, Hyuk Ju Ryu, Nae-In Lee, Young Su Chung, Kwang-Pyuk Suh, Hyo Sik Chang, Yunseok Kim, Ho-Kyu Kang, and Hionsuck Baik
For the first time, we integrated poly-Si gate CMOSFETs with nitrogen incorporated HfO/sub 2/-Al/sub 2/O/sub 3/ laminate (HfAlON) as gate dielectrics. Both low gate leakage currents (0.1 mA/cm/sup 2/ at V/sub g/=+1.0 V) and low EOT (15.6 /spl Aring/) sufficiently satisfy the specifications (EOT=12/spl sim/20 /spl Aring/, J/sub g/=2.2 mA/cm/sup 2/) estimated by ITRS for low power applications. By in-situ 3 step post-deposition annealing, approximately 17 at.% nitrogen is incorporated at the HfAlON/Si interface. In-situ 3 step post-deposition annealing decreases metallic Hf bonding, which exists at the HfO/sub 2/-Al/sub 2/O/sub 3/ laminate/Si interface. As a result, we can suppress C-V hysteresis and improve current performance. Finally, well-behaved 100 nm CMOSFET devices are achieved. The measured saturation currents at 1.2 V V/sub dd/ are 585 /spl mu//spl Aring///spl mu/m (I/sub off/= 10 nA//spl mu/m) for nMOSFET and 265 /spl mu/A//spl mu/m (I/sub off/=10 nA//spl mu/m) for pMOSFET, which are approximately 80% of those of nitrided SiO/sub 2/. In terms of I/sub on/-I/sub off/ characteristics of n/pMOSFETs, these results represent the best current performance compared with previous reports for poly-Si gate CMOSFETs with high-k gate dielectrics.