1. One-pot pyrolysis synthesis of highly active Ru/RuOX nanoclusters for water splitting
- Author
-
Jingrui Shang, Lingjian Zeng, Fengyuan Zhu, Jian-Ping Lang, Jiang-Yan Xue, Shuanglong Lu, Hongwei Gu, Xueqin Cao, and Brendan F. Abrahams
- Subjects
Hydrogen ,Oxygen evolution ,chemistry.chemical_element ,Overpotential ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Catalysis ,law.invention ,Ruthenium ,Nanoclusters ,chemistry ,Chemical engineering ,law ,Water splitting ,General Materials Science ,Calcination ,Electrical and Electronic Engineering - Abstract
Using simple methods to obtain efficient catalysts has been a long-standing goal for researchers. In this work, the employment of a one-pot pyrolysis reaction to achieve molecular confinement, has led to the preparation of ruthenium (Ru)-based nanoclusters in a carbon matrix. A unique feature of the synthetic approach employed is that solvent and substrates were calcined together. As solvent evaporates, during calcination, the substrates form a dense solid which has the effect of limiting the aggregation of Ru centers during the carbonization process. The catalyst prepared in this simple manner showed an impressively high activity with respect to the hydrogen/oxygen evolution reaction (HER/OER). The Ru nanoclusters (Ru NCs), as the hydrogen evolution reaction (HER) catalysts, require ultralow overpotentials of 5 mV and 5.1 mV at −10 mA·cm−2 in 1.0 M KOH, and 0.5 M H2SO4, respectively. Furthermore, the catalyst prepared by the one-pot method has higher crystallinity, a higher Ru content and an ultrafine cluster size, which contributes to its exceptional electrochemical performance. Meanwhile, the RuOX nanoclusters (RuOX NCs), obtained by oxidizing the aforementioned Ru NCs, exhibited good oxygen evolution reaction (OER) performance with an overpotential of 266 mV at 10 mA·cm−2. When applied to overall water splitting, Ru/RuOX nanoclusters as the cathode and anode catalysts can reach 10 mA·cm−2 at cell voltages of only 1.49 V in 1 M KOH.
- Published
- 2021
- Full Text
- View/download PDF