6 results on '"Oud, Machteld M"'
Search Results
2. Identical IFT140 Variants Cause Variable Skeletal Ciliopathy Phenotypes--Challenges for the Accurate Diagnosis.
- Author
-
Walczak-Sztulpa, Joanna, Wawrocka, Anna, Doornbos, Cenna, van Beek, Ronald, Sowińska-Seidler, Anna, Jamsheer, Aleksander, Bukowska-Olech, Ewelina, Latos-Bieleńska, Anna, Grenda, Ryszard, Bongers, Ernie M. H. F., Schmidts, Miriam, Obersztyn, Ewa, Krawczyński, Maciej R., and Oud, Machteld M.
- Subjects
CILIOPATHY ,GENETIC variation ,CONGENITAL disorders ,EXOMES ,DIAGNOSIS ,PHENOTYPES ,POLYDACTYLY - Abstract
Ciliopathies are rare congenital disorders, caused by defects in the cilium, that cover a broad clinical spectrum. A subgroup of ciliopathies showing significant phenotypic overlap are known as skeletal ciliopathies and include Jeune asphyxiating thoracic dysplasia (JATD), Mainzer-Saldino syndrome (MZSDS), cranioectodermal dysplasia (CED), and short-rib polydactyly (SRP). Ciliopathies are heterogeneous disorders with >187 associated genes, of which some genes are described to cause more than one ciliopathy phenotype. Both the clinical and molecular overlap make accurate diagnosing of these disorders challenging. We describe two unrelated Polish patients presenting with a skeletal ciliopathy who share the same compound heterozygous variants in IFT140 (NM_014,714.4) r.2765_2768del; p.(Tyr923Leufs*28) and exon 27-30 duplication; p.(Tyr1152_Thr1394dup). Apart from overlapping clinical symptoms the patients also show phenotypic differences; patient 1 showed more resemblance to a Mainzer-Saldino syndrome (MZSDS) phenotype, while patient 2 was more similar to the phenotype of cranioectodermal dysplasia (CED). In addition, functional testing in patientderived fibroblasts revealed a distinct cilium phenotyps for each patient, and strikingly, the cilium phenotype of CED-like patient 2 resembled that of known CED patients. Besides two variants in IFT140, in depth exome analysis of ciliopathy associated genes revealed a likely-pathogenic heterozygous variant in INTU for patient 2 that possibly affects the same IFT-A complex to which IFT140 belongs and thereby could add to the phenotype of patient 2. Taken together, by combining genetic data, functional test results, and clinical findings we were able to accurately diagnose patient 1 with "IFT140-related ciliopathy with MZSDSlike features" and patient 2 with "IFT140-related ciliopathy with CED-like features". This study emphasizes that identical variants in one ciliopathy associated gene can lead to a variable ciliopathy phenotype and that an in depth and integrated analysis of clinical, molecular and functional data is necessary to accurately diagnose ciliopathy patients. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Interfamilial clinical variability in four Polish families with cranioectodermal dysplasia and identical compound heterozygous variants in WDR35.
- Author
-
Walczak-Sztulpa, Joanna, Wawrocka, Anna, Sta(nczyk, Małgorzata, Pesz, Karolina, Dudarewicz, Lech, Chrul, Sławomir, Bukowska-Olech, Ewelina, Wieczorek-Cichecka, Nina, Arts, Heleen H., Oud, Machteld M., Śmigiel, Robert, Grenda, Ryszard, Obersztyn, Ewa, Chrzanowska, Krystyna H., and Latos-Biele(nska, Anna
- Abstract
Cranioectodermal dysplasia (CED) is a rare autosomal recessive disorder primarily characterized by craniofacial, skeletal, and ectodermal abnormalities. CED is a chondrodysplasia, which is part of a spectrum of clinically and genetically heterogeneous diseases that result from disruptions in cilia. Pathogenic variants in genes encoding components of the ciliary transport machinery are known to cause CED. Intra‐ and interfamilial clinical variability has been reported in a few CED studies and the findings of this study align with these observations. Here, we report on five CED patients from four Polish families with identical compound heterozygous variants [c.1922T>G p.(Leu641Ter) and c.2522A>T; p.(Asp841Val)] in WDR35. The frequent occurrence of both identified changes in Polish CED families suggests that these variants may be founder mutations. Clinical evaluation of the CED patients revealed interfamilial clinical variability among the patients. This includes differences in skeletal and ectodermal features as well as variability in development, progression, and severity of renal and liver insufficiency. This is the first report showing significant interfamilial clinical variability in a series of CED patients from unrelated families with identical compound heterozygous variants in WDR35. Our findings strongly indicate that other genetic and non‐genetic factors may modulate the progression and expression of the patients' phenotypes. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
4. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome.
- Author
-
Oud, Machteld M., Bonnard, Carine, Mans, Dorus A., Altunoglu, Umut, Tohari, Sumanty, Jin Ng, Alvin Yu, Eskin, Ascia, Lee, Hane, Rupar, C. Anthony, de Wagenaar, Nathalie P., Ka Man Wu, Lahiry, Piya, Pazour, Gregory J., Nelson, Stanley F., Hegele, Robert A., Roepman, Ronald, Kayserili, Hülya, Venkatesh, Byrappa, Siu, Victoria M., and Reversade, Bruno
- Subjects
- *
CILIARY body , *ENDOCRINE diseases , *KINASES - Abstract
Background: Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. Results: Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. Conclusions: Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
5. Cellular ciliary phenotyping indicates pathogenicity of novel variants in <italic>IFT140</italic> and confirms a Mainzer–Saldino syndrome diagnosis.
- Author
-
Oud, Machteld M., Latour, Brooke L., Bakey, Zeineb, Letteboer, Stef J., Lugtenberg, Dorien, Wu, Ka Man, Cornelissen, Elisabeth A. M., Yntema, Helger G., Schmidts, Miriam, Roepman, Ronald, and Bongers, Ernie M. H. F.
- Subjects
- *
SKELETAL abnormality diagnosis , *CILIOPATHY , *PHENOTYPES , *EXOMES , *MICROBIAL virulence - Abstract
Background: Mainzer–Saldino syndrome (MZSDS) is a skeletal ciliopathy and part of the short-rib thoracic dysplasia (SRTD) group of ciliary disorders. The main characteristics of MZSDS are short limbs, mild narrow thorax, blindness, and renal failure. Thus far, variants in two genes are associated with MZSDS:
IFT140, andIFT172 . In this study, we describe a 1-year-old girl presenting with mild skeletal abnormalities, Leber congenital amaurosis, and bilateral hearing difficulties. For establishing an accurate diagnosis, we combined clinical, molecular, and functional analyses. Methods: We performed diagnostic whole-exome sequencing (WES) analysis to determine the genetic cause of the disease and analyzed two gene panels, containing all currently known genes in vision disorders, and in hearing impairment. Upon detection of the likely causative variants, ciliary phenotyping was performed in patient urine-derived renal epithelial cells (URECs) and rescue experiments were performed in CRISPR/Cas9-derivedIft140 knock out cells to determine the pathogenicity of the detected variants in vitro. Cilium morphology, cilium length, and intraflagellar transport (IFT) were evaluated by immunocytochemistry. Results: Diagnostic WES revealed two novel compound heterozygous variants inIFT140 , encoding IFT140. Thorough investigation of WES data did not reveal any variants in candidate genes associated with hearing impairment. Patient-derived URECs revealed an accumulation of IFT-B protein IFT88 at the ciliary tip in 41% of the cells indicative of impaired retrograde IFT, while this was absent in cilia from control URECs. Furthermore, transfection of CRISPR/Cas9-derivedIft140 knock out cells with an IFT140 construct containing the patient mutation p.Tyr923Asp resulted in a significantly higher percentage of IFT88 tip accumulation than transfection with the wild-type IFT140 construct. Conclusions: By combining the clinical, genetic, and functional data from this study, we could conclude that the patient has SRTD9, also called Mainzer–Saldino syndrome, caused by variants inIFT140 . We suggest the possibility that variants inIFT140 may underlie hearing impairment. Moreover, we show that urine provides an excellent source to obtain patient-derived cells in a non-invasive manner to study the pathogenicity of variants detected by genetic testing. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
6. CiliaCarta: An integrated and validated compendium of ciliary genes
- Author
-
Gerard W. Dougherty, Victor L. Jensen, Jan Frederik Scheel, Katarzyna Szymanska, Uwe Wolfrum, Radek Szklarczyk, Miriam Schmidts, Julie Kennedy, Erwin van Wijk, Brunella Franco, Toby J. Gibson, Machteld M. Oud, Chunmei Li, Nils J. Lambacher, Erik de Vrieze, Grischa Toedt, Teunis J. P. van Dam, Karsten Boldt, Heymut Omran, Yves Texier, Rachel H. Giles, Ronald Roepman, Kirsten A. Wunderlich, Sylvia E. C. van Beersum, Oliver E. Blacque, Thanh-Minh T. Nguyen, Konstantinos Koutroumpas, Hannie Kremer, Nicola Horn, Martijn A. Huynen, Michel R. Leroux, Gabrielle Wheway, Rim Hjeij, Philip L. Beales, Gisela G. Slaats, Robert B. Russell, Robin van der Lee, François Képès, Yasmin Wissinger, Barbara Knapp, Dorus A. Mans, Suzanne Rix, Marius Ueffing, Colin A. Johnson, Stef J.F. Letteboer, Victor Hernandez-Hernandez, Qianhao Lu, Jeroen van Reeuwijk, Sub Bioinformatics, Theoretical Biology and Bioinformatics, MUMC+: DA KG Lab Centraal Lab (9), Klinische Genetica, RS: GROW - R4 - Reproductive and Perinatal Medicine, van Dam, Teunis J P, Kennedy, Julie, van der Lee, Robin, de Vrieze, Erik, Wunderlich, Kirsten A, Rix, Suzanne, Dougherty, Gerard W, Lambacher, Nils J, Li, Chunmei, Jensen, Victor L, Leroux, Michel R, Hjeij, Rim, Horn, Nicola, Texier, Yve, Wissinger, Yasmin, van Reeuwijk, Jeroen, Wheway, Gabrielle, Knapp, Barbara, Scheel, Jan F, Franco, Brunella, Mans, Dorus A, van Wijk, Erwin, Képès, Françoi, Slaats, Gisela G, Toedt, Grischa, Kremer, Hannie, Omran, Heymut, Szymanska, Katarzyna, Koutroumpas, Konstantino, Ueffing, Mariu, Nguyen, Thanh-Minh T, Letteboer, Stef J F, Oud, Machteld M, van Beersum, Sylvia E C, Schmidts, Miriam, Beales, Philip L, Lu, Qianhao, Giles, Rachel H, Szklarczyk, Radek, Russell, Robert B, Gibson, Toby J, Johnson, Colin A, Blacque, Oliver E, Wolfrum, Uwe, Boldt, Karsten, Roepman, Ronald, Hernandez-Hernandez, Victor, and Huynen, Martijn A
- Subjects
Proteomics ,Sensory Receptors ,Nematoda ,Social Sciences ,Ciliopathies ,Biochemistry ,Sensory disorders Donders Center for Medical Neuroscience [Radboudumc 12] ,Transcriptome ,0302 clinical medicine ,Animal Cells ,Psychology ,RETINAL PHOTORECEPTOR CELLS ,Exome ,Neurons ,0303 health sciences ,030302 biochemistry & molecular biology ,Eukaryota ,Genomics ,PRIMARY CILIUM ,thecilium ,3. Good health ,Nucleic acids ,Genetic interference ,Osteichthyes ,Medicine ,Epigenetics ,Cellular Structures and Organelles ,Cellular Types ,proteomic databases ,Sensory Receptor Cells ,Science ,education ,Ciliary genes ,LEBER CONGENITAL AMAUROSIS ,03 medical and health sciences ,Genetics ,Cilia ,Caenorhabditis elegans ,IDENTIFICATION ,MUTATIONS ,Embryos ,cilia ,Organisms ,Biology and Life Sciences ,Bayes Theorem ,Molecular Sequence Annotation ,medicine.disease ,Invertebrates ,Fish ,ciliary proteome ,Animal Studies ,Caenorhabditis ,Gene expression ,embryos ,030217 neurology & neurosurgery ,Developmental Biology ,Neuroscience ,Photoreceptors ,Candidate gene ,Embryology ,Oligonucleotides ,Morpholino ,Database and Informatics Methods ,RNA interference ,Bayesian classifier ,TRANSITION ZONE ,Zebrafish ,Antisense Oligonucleotides ,Multidisciplinary ,Spectrometric Identification of Proteins ,Proteomic Databases ,Nucleotides ,Cilium ,Stable Isotope Labeling by Amino Acids in Cell Culture ,photoreceptors ,Metabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6] ,Animal Models ,Phenotype ,INTRAFLAGELLAR TRANSPORT ,DIFFERENTIATION ,Experimental Organism Systems ,Caenorhabditis Elegans ,Vertebrates ,Sensory Perception ,Research Article ,Signal Transduction ,EXPRESSION ,Stable isotope labeling by amino acids in cell culture ,Computational biology ,Biology ,Research and Analysis Methods ,SOLUTE-CARRIER-PROTEIN ,Model Organisms ,medicine ,Animals ,data integration ,030304 developmental biology ,Afferent Neurons ,Reproducibility of Results ,Cell Biology ,zebrafish ,biology.organism_classification ,Ciliopathy ,Renal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11] ,Biological Databases ,Cellular Neuroscience ,RNA ,OSCP1 ,CiliaCarta - Abstract
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/. This work was supported by the European Community’s Seventh Framework Programme [241955, 278568 to MU and KB, 602273 to RS]; the Virgo consortium, funded by the Dutch government [FES0908 to TvD, RvdL and MAH]; the Netherlands Genomics Initiative [050-060-452 to TvD, RvdL and MAH]; the Canadian Institutes of Health Research [MOP-142243, MOP-82870 and PJT-156042 to MRL]; Michael Smith Foundation for Health Research to MRL and VLJ; Kidney Research Scientist Core Education and National Training fellowship to VLJ; The Foundation Fighting Blindness [PPA-0717-0719-RAD to UW, RR, and MU]; the Dutch Kidney Foundation “KOUNCIL” consortium [CP11.18 to RHG, PLB and RR]; The Deutsche Forschungsgemeinschaft [Excellence grant CellNetworks to RBR and QL, CRC1140 “Kidney Disease – From Genes to Mechanisms” to MS, collaborative research center grant SFB-1411 KIDGEM to MS]; Metakids Foundation to RS; the National Institute for Health Research to PLB and VH-H. PLB is an NIHR Senior Investigator; Radboudumc Hypatia Tenure Track Fellowship, Radboud Universiteit excellence fellowship, ERC starting grant TREATCilia, grant agreement no. 716344 to MS; and the Netherlands Organization for Scientific Research [NWO Vici-865.12.005 to RR].
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.