1. High-temperature mechanical behavior of ultra-coarse cemented carbide with grain strengthening
- Author
-
Haibin Wang, Yong Liu, Huaxin Hu, Junhua Luan, Chao Liu, Hao Lu, Xuemei Liu, Zengbao Jiao, Jinghong Chen, and Xiaoyan Song
- Subjects
Materials science ,Polymers and Plastics ,Mechanical Engineering ,Metals and Alloys ,Cermet ,Carbide ,Crystal ,Stress (mechanics) ,Solid solution strengthening ,Compressive strength ,Mechanics of Materials ,Materials Chemistry ,Ceramics and Composites ,Cemented carbide ,Dislocation ,Composite material - Abstract
Ultra-coarse grained cemented carbides are often used under conditions of concurrently applied stress and high temperature. Improvement of high-temperature mechanical performance of ultra-coarse grained cemented carbides is highly desirable but still a big challenge. In this study, it is proposed that the high-temperature compression strength of ultra-coarse cemented carbides can be enhanced by modulating hard matrix grains by activated TaC nanoparticles, through solid solution strengthening of Ta atoms. Based on the designed experiments and microstructural characterizations combined with finite element simulations, the grain morphology, stress distribution and dislocation configuration were studied in detail for ultra-coarse grained cemented carbides. The mechanisms of Ta dissolving in WC crystal and strengthening ultra-coarse grains through interaction with dislocations were disclosed from the atomic scale. This study opens a new perspective to modulate hard phases of cemented carbides for improving their high-temperature performance, which will be applicable to a variety of cermet and ceramic-based composite materials.
- Published
- 2022