1. A New Approach to Overgenerating and Scoring Abstractive Summaries
- Author
-
Bingqing Wang, Kaiqiang Song, Fei Liu, and Zhe Feng
- Subjects
FOS: Computer and information sciences ,Computer Science - Computation and Language ,business.industry ,Computer science ,02 engineering and technology ,010501 environmental sciences ,Space (commercial competition) ,computer.software_genre ,01 natural sciences ,Automatic summarization ,Set (abstract data type) ,0202 electrical engineering, electronic engineering, information engineering ,Benchmark (computing) ,020201 artificial intelligence & image processing ,Artificial intelligence ,Source text ,business ,Control (linguistics) ,Computation and Language (cs.CL) ,computer ,Natural language processing ,0105 earth and related environmental sciences ,Generator (mathematics) - Abstract
We propose a new approach to generate multiple variants of the target summary with diverse content and varying lengths, then score and select admissible ones according to users' needs. Abstractive summarizers trained on single reference summaries may struggle to produce outputs that achieve multiple desirable properties, i.e., capturing the most important information, being faithful to the original, grammatical and fluent. In this paper, we propose a two-staged strategy to generate a diverse set of candidate summaries from the source text in stage one, then score and select admissible ones in stage two. Importantly, our generator gives a precise control over the length of the summary, which is especially well-suited when space is limited. Our selectors are designed to predict the optimal summary length and put special emphasis on faithfulness to the original text. Both stages can be effectively trained, optimized and evaluated. Our experiments on benchmark summarization datasets suggest that this paradigm can achieve state-of-the-art performance., NAACL 2021 (Long Paper)
- Published
- 2021