1. Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning
- Author
-
Zhang Yayan, Yi Pan, Fang-Xiang Wu, Jianxin Wang, Cheng Yan, and Guihua Duan
- Subjects
Drug ,Computer science ,media_common.quotation_subject ,0206 medical engineering ,02 engineering and technology ,Semi-supervised learning ,Machine learning ,computer.software_genre ,Cross-validation ,Genetics ,Humans ,Drug Interactions ,Drug reaction ,Least-Squares Analysis ,media_common ,business.industry ,Applied Mathematics ,Cosine similarity ,Pharmaceutical Preparations ,Drug development ,Learning methods ,Supervised Machine Learning ,Artificial intelligence ,business ,Classifier (UML) ,computer ,Algorithms ,020602 bioinformatics ,Biotechnology - Abstract
A drug-drug interaction (DDI) is defined as an association between two drugs where the pharmacological effects of a drug are influenced by another drug. Positive DDIs can usually improve the therapeutic effects of patients, but negative DDIs cause the major cause of adverse drug reactions and even result in the drug withdrawal from the market and the patient death. Therefore, identifying DDIs has become a key component of the drug development and disease treatment. In this study, we propose a novel method to predict DDIs based on the integrated similarity and semi-supervised learning (DDI-IS-SL). DDI-IS-SL integrates the drug chemical, biological and phenotype data to calculate the feature similarity of drugs with the cosine similarity method. The Gaussian Interaction Profile kernel similarity of drugs is also calculated based on known DDIs. A semi-supervised learning method (the Regularized Least Squares classifier) is used to calculate the interaction possibility scores of drug-drug pairs. In terms of the 5-fold cross validation, 10-fold cross validation and de novo drug validation, DDI-IS-SL can achieve the better prediction performance than other comparative methods. In addition, the average computation time of DDI-IS-SL is shorter than that of other comparative methods. Finally, case studies further demonstrate the performance of DDI-IS-SL in practical applications.
- Published
- 2022
- Full Text
- View/download PDF