1. A novel focus encoding scheme for addressee detection in multiparty interaction using machine learning algorithms
- Author
-
Julien Saunier, Usman Malik, Alexandre Pauchet, Mukesh Barange, Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU), Equipe Multi-agent, Interaction, Décision (MIND - LITIS), Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU), Institut des Systèmes Intelligents et de Robotique (ISIR), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Scheme (programming language) ,Computer science ,Feature selection ,02 engineering and technology ,010501 environmental sciences ,Machine learning ,computer.software_genre ,01 natural sciences ,Task (project management) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,0202 electrical engineering, electronic engineering, information engineering ,Encoding (semiotics) ,[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,computer.programming_language ,Focus (computing) ,business.industry ,Deep learning ,Turn-taking ,Human-Computer Interaction ,[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA] ,Signal Processing ,Dyadic interaction ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,computer ,Algorithm - Abstract
Addressee detection is a fundamental task for seamless dialogue management and turn taking in human-agent interaction. Though addressee detection is implicit in dyadic interaction, it becomes a challenging task when more than two participants are involved. This article proposes multiple addressee detection models based on smart feature selection and focus encoding schemes. The models are trained using different machine learning and deep learning algorithms. This research work improves existing baseline accuracies for addressee prediction on two datasets. In addition, the article explores the impact of different focus encoding schemes in several addressee detection cases. Finally, an implementation strategy for addressee detection model in real-time is discussed.
- Published
- 2021
- Full Text
- View/download PDF